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Fig. 2. Predictions of individual perception. (A) Example of a random-forest algorithm that 

utilizes a subset of molecules from the training set to match a semantic descriptor (e.g “garlic”) 

to a subset of molecular features. (B) Example of a regularized linear model. For each perceptual 

attribute yi a linear model utilizes molecular features xij weighted by βi to predict the 

psychophysical data of 69 hidden test set molecules, with sparsity enforced by the magnitude of 

λ. (C) Correlation values of best-performer model across 69 hidden test set molecules, sorted by 
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Euclidean distance across 21 perceptual attributes and 49 individuals. (D) Correlation values for 

the average of all models (red dots, mean ± s.d.), best-performing model (white dots), and best-

predicted individual (black dots), sorted by the average of all models. (E) Prediction correlation 

of the best-performing random-forest model plotted against measured standard deviation of each 

subject’s perception across 69 hidden test set molecules for the four indicated attributes. Each 

dot represents one of 49 individuals. (F) Correlation values between prediction correlation and 

measured standard deviation for 21 perceptual attributes across 49 individuals, color coded as in 

E. The dotted line represents the p<0.05 significance threshold obtained from shuffling 

individuals. 
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Fig. 3. Predictions of population perception. (A), Average of correlation of population 

predictions. Error bars indicate standard deviations calculated across models. (B) Ranked 

prediction correlation for 69 hidden test set molecules produced by aggregated models (open 

black circles, standard deviation indicated with grey bars) and the average of all models (solid 

black dots, standard deviation indicated with black bars). (C-E) Prediction correlation with 

increasing number of Dragon features using random-forest (red) or linear (black) models. 

Attributes are ordered from top to bottom and left to right by the number of features required to 

obtain 80% of the maximum prediction correlation using the random-forest model. Plotted are 

intensity and pleasantness (C), and attributes that required six or fewer (D) or more than six 

features (E). The combined training+leaderboard set of 407 molecules was randomly partitioned 

250 times to obtain error bars for both types of models. 
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Fig. 4. Predicting the smell of specific molecules. (A-B), The five most important molecular 

features selected from Dragon, Morgan, and NSPDK (red text) for predicting (A) intensity and 

(B) pleasantness using the random-forest model from the post-challenge phase. Each grey dot 

represents one of the 407 molecules in the training+leaderboard set, with example molecules 

indicated by red dots. For (A), only three features are shown. The other two are very similar to 

the one shown in the top panel (B03[C-S]) and the one shown in the middle panel 

(Eig07_AEA(dm)), respectively.  
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Fig. 5. Quality of predictions. (A-B) Community phase predictions for random-forest (A) and 

linear (B) models using both Morgan and Dragon features for population prediction. The training 

set was randomly partitioned 250 times to obtain error bars *p<0.05, **p<0.01, ***p<0.001 

corrected for multiple comparisons (FDR). (C) Comparison between correlation coefficients for 

model predictions and for test-retest for individual perceptual attributes using the aggregated 

predictions from linear and random-forest models. Error bars reflect standard error obtained from 

jackknife resampling of the retested molecules. Linear regression of the model-test correlation 

coefficients against the test-retest correlation coefficients yields a slope of 0.80 ± 0.02 and a 

correlation of r=0.870 (black line) compared to a theoretically optimal model (perfect prediction 
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given intra-individual variability, dashed red line). Only the model-test correlation coefficient for 

“burnt” (15) was statistically distinguishable from the corresponding test-retest coefficient 

(p<0.05 with FDR correction). (D) Schematic for reverse-engineering a desired sensory profile 

from molecular features. The model was presented with the experimental sensory profile of a 

molecule (spider plot, left) and tasked with searching through 69 hidden test set molecules 

(middle) to find the best match (right, model prediction in red). Spider plots represent perceptual 

data for all 21 attributes, with the lowest rating at the center and highest at the outside of the 

circle. (E) Example where the model selected a molecule with a sensory profile 7th closest to the 

target, butyric acid. (F) Population prediction quality for the 69 molecules in the hidden test set 

when all 19 models are aggregated. The overall area under the curve (AUC) for the prediction is 

0.83, compared to 0.5 for a random model (grey dotted line) and 1.0 for a perfect model. 
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Materials and Methods: 

 

Perceptual Data 

The psychophysical data for this project were collected between February 2013 and July 

2014 as part of the Rockefeller University Smell Study. Data from 49 individuals (28 women, 

median age 36) were used for the DREAM challenge. The dataset represents a subset of that 

presented in the original study (1), which was unpublished until the DREAM challenge was 

completed in early 2016. Six individuals declined permission to have their data used in the 

DREAM challenge. We excluded data on familiarity and edibility ratings for all stimuli, as well 

as data about whether the individual recognized the smell and how they described it in their own 

words, as well as data from 4 molecules [compound identification number (CID) 6202: thiamine 

hydrochloride; CID 24203: sodium phosphate dibasic; CID 2537: camphor; CID 10644: 2-

methoxy-3(5 or 6)-isopropylpyrazine]. Twenty-four individuals self-identified as Black, 14 as 

White, 5 as Asian, and 2 as Native American. Nine individuals self-identified as Hispanic. 

Individuals provided perceptual ratings of 992 stimuli, 476 different monomolecular chemicals at 

two different concentrations with 20 molecules tested twice. 

Each molecule was presented to individuals at two different concentrations, diluted in 

paraffin oil so that the "high" and “low” concentrations for each molecule were empirically set to 

about equal intensity. While molecules were obtained at high purity (>97%), we cannot exclude 

the possibility that trace contaminants or degradation products account for or add to the odor of 

the molecule. In the DREAM challenge, teams were asked for predictions of pleasantness and 

the 19 descriptors only for the “high” concentrations. Individuals were asked to rate each 

stimulus using 21 perceptual attributes (intensity, pleasantness, and 19 semantic descriptors), by 

moving an unlabeled slider. The default location of the slider was 50 for intensity and 

pleasantness, and 0 for the 19 descriptors. For each task, the final position of the slider was 

translated into a scale from 0 to 100, where 100 signified highest intensity and pleasantness, and 

the best match of a descriptor for a given stimulus. Further details on the psychophysical 

procedures and all raw data are available in the original study (1). 

 

Molecular features 

We provided challenge participants with the CID for each molecule, useful for PubChem 
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(https://pubchem.ncbi.nlm.nih.gov/) or other database searches. We used the Dragon software 

package (version 6; http://www.talete.mi.it) to generate a large number of chemical features for 

each molecule and made these available to participants. 

 

Baseline model for splitting data for the challenge 

We developed a linear model with a second layer cubic correction based on a PCA-

reduced version of Dragon features to predict the perception of the population. The underlying 

methodology was used to solve the population prediction and is a multi-linear regression for each 

of the attributes based on the responses of all individuals and the molecular features of each 

molecule. The only pre-processing of the data we did was dimensionality reduction of the 

number of Dragon features, and a log transformation of the values. Based on the above, we chose 

a random partition that yields good predictive accuracy. We chose the partitions for the 

leaderboard set and hidden test set based on the distribution of median correlation over test 

molecules obtained with the model, for different random partitions. The median correlation 

across molecules selected for the selected partition is above 0. 

 

Models 

A graphical illustration of one of many decision trees generated by the random-forest 

algorithm as it evaluates how different structural and physical components determine “garlic” 

smell is shown in Figure 2a. In each tree, the training data are sequentially partitioned such that 

each branch point helps increase the accuracy of a prediction. These trees are then aggregated, 

with their predictions averaged, through a process called bagging. Because the dimensionality of 

the structural data is high with 4884 Dragon features per molecule and the perception data matrix 

is sparse, random-forest models are well suited as they help reduce the dimension of the 

structural data by ignoring unimportant features, and help determine the decision boundary 

between perceptual ratings of zero and the more informative values. Because most perceptual 

attributes appeared to depend non-linearly on molecular features, and interactions between 

features may explain some of the perceptual experience, random-forest models—which can 

account for these complexities–performed best in this study. However, regularized linear models 

fared a close second for individual predictions (Data File S1). Linear models (Fig. 2b), which 

have previously been used to predict perceptual attributes (2, 3), served as a baseline model for 
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the challenge. Their simplicity and good interpretability makes them appealing. Since the 

number of Dragon features far exceeds the number of molecules, simple linear models such as 

ordinary least squares regression will produce over-fitting and fail to generalize to untested 

molecules. Such models will also be sensitive to the highly non-normal distribution of the data 

and obviously fail to capture non-linear relationships between structural features and perceptual 

attributes. To overcome these problems, the best linear models used not only the original 

features, but also their squares (scaled between 0 and 1), and thus were quadratic in the original 

feature values. To reduce over-fitting, these models used randomized Lasso feature selection, so 

the summed magnitude of all the regression coefficients is minimized along with the mean-

squared error; this automatically selects for models in which many coefficients are zero. Such 

models were fit on resampled datasets to find the best-fitting and most informative features (Data 

File S1). 

 

Scoring 

The training set contained perceptual attribute data from 338 of the 476 molecules. The 

leaderboard set used for model validation and a hidden test set used for final predictions 

contained perceptual attribute data from 69 molecules each (Data File S1). Participants had 

access to the Dragon features for all 476 molecules. However, none of the challenge participants 

had access to the perceptual attribute data for the 69 molecules in the final hidden test set at any 

point during the challenge or the community phase. Scoring was handled by the organizers, 

including PM and RN. Models were scored as follows: for individual prediction, the Pearson 

correlation between model and data, across test-set molecules, was computed for each individual 

and attribute. The mean correlations over individuals resulted in 21 attribute-level correlations. 

These were reduced to (1) the correlation for intensity, (2) the correlation for pleasantness, and 

(3) the mean of the correlations for the 19 semantic descriptors. These three items were 

normalized into Z-scores by using the mean and standard deviation for the same dataset with 

molecule identities shuffled. The final score is the mean of the three Z-scores. Population 

prediction was scored similarly except that the data were aggregated into means and standard 

deviations across individuals for each molecule and attribute. Models were asked to predict these 

means and standard deviations. Here six Z-scores were used, with three corresponding to the 
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means and three to the standard deviations. In both cases we re-scored the models in 1000 

bootstraps of the hidden test set.  

For individual prediction, the best-performing model remained first in 80 per cent of the 

bootstrap runs, whereas the second model ranked first in 8 per cent of the runs. For population 

prediction, the best-performing model remained first in 38 per cent of the bootstrap runs, 

whereas the second model ranked first in 26 per cent of the runs.  

 

Aggregation of models 

Participant models were aggregated by first ranking by descending Z-score, then 

averaging one-by-one following these ranks (the 2 highest ranked models, the 3 highest ranked 

models, etc.) until all models were aggregated to obtain the same number of aggregations as 

models. 

 

Post-challenge community phase 

Five teams (Teams IKW Allstars, GuanLab, KU Leuven, Russ Wolfinger, and Joel 

Mainland) participated in this phase of the challenge where we discussed ways to enhance the 

predictions. Each team submitted one new model for both individual and population predictions 

based on these discussions, which was scored against the same test-set as during the open phase 

of the challenge. An aggregate model built from these five models was also scored (Figure 1h). 

 

Assessing the reverse-engineering of perceptual profiles using the aggregate model 

One way to assess the sensitivity of the model’s sensory profile predictions is to calculate 

the probability of having exactly k correct sensory profile predictions from a list of n molecules, 

that is: 𝑝𝑘
𝑛 = (𝑛

𝑘
)𝑞𝑛−𝑘(1 − 𝑞)𝑘 where 𝑞 =

(𝑛−1)

𝑛
 is the probability of matching incorrectly one 

profile to the list of n molecules. 

Here n=69 and the aggregated model was able to reverse-engineer k=14 sensory profiles 

perfectly (20%), so 𝑝14
69 = 1.2492 ∗ 10−12. 

Another way to measure the performance is to measure the area under the model prediction rank 

curve (AUC) of Figure 5f. For a perfect model, the prediction rank for every molecule is 1 and so 

the AUC is the entire plot area: 69*69 (normalized to 1); for a random model all ranks are 
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equally likely and 5f would show a diagonal line (in expectation), with area ∑ 𝑖69
1 .=69*68/2 

normalized to an AUC of 0.5. For our model presented here has an AUC equal to the perfect 

model area minus the sum of the ranks of the aggregate model i.e 69*69-830 (normalized to 

0.826). 

 

Data and Models 

Weblinks for data and models are provided below. On the web pages, individual 

predictions are known as “Subchallenge 1,” and population prediction as “Subchallenge 2.” 

Model details and code from the best-performing team for individual prediction (Team GuanLab; 

authors Y.G. and B. P): 

https://www.synapse.org/#!Synapse:syn3354800/wiki/ (see files folder for code) 

Model details and code for the best-performing team for population prediction (Team IKW 

Allstars; author R.C.G.): 

https://www.synapse.org/#!Synapse:syn3822692/wiki/231036 (check ipython notebooks) 

DREAM Olfaction challenge description, participants, leaderboards and datasets: 

https://www.synapse.org/#!Synapse:syn2811262/wiki/78368 

Model descriptions and predictions: 

https://www.synapse.org/#!Synapse:syn2811262/wiki/78388 

Code and details to reproduce analysis for scoring and to reproduce all the analysis for the 

Figures: 

http://dream-olfaction.github.io 

Additional Author notes: 

DREAM Olfaction Prediction Challenge Consortium: 

Agnieszka Kitlas Golińska15, Aleksandar Dimitriev16, Amol P. Bhondekar17, Andrej Dolenc16, 

Andrew Matteson18,19, Aneta Polewko-Klim15, Barbara F. Huang20, Blaz Zupan16, Bor-Wei 

Cherng21, Chien-Yu Chen21,22, Delia Yao20, G.P.S Raghava23, Jose M.G. Vilar24,25, László 

Hunyady5,6, Leonor Saiz26,Marat D. Kazanov27, Marinka Zitnik16,Marko Toplak16, Michael 

Xie20, Ming-Yi Hong22, Nancy Yu20 , Paul C. Boutros20,28,29, Peter Us16, Péter Várnai5, Ping-Han 

Hsieh30, Radosław Piliszek15, Ren X. Sun20,28, Rishemjit Kaur17, Ritesh Kumar17, Witold R. 
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Fig. S1. Correlation and covariance of perceptual attributes. (A-B) Line width and color 

represent the strength of the pairwise correlation (A) and normalized covariance (B) between 21 

attributes for all molecules and individuals.  
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Fig. S2. Best performer outcomes for mean and standard deviation for population 

prediction. (A-B) Intensity and pleasantness (A) and 19 descriptor (B) predictions of the mean 

of the best-performing team plotted against the observed values for the 69 hidden test set 

molecules used for model validation.  
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Fig. S3. Prediction performance. Pearson correlation between predicted and measured mean 

perception of the 64 molecules that were the easiest (black dots) and the five molecules that were 

the most difficult (white dots) to predict. Teams are ordered by their final score for population 

prediction, with the best performer ranked 1.  
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Fig. 

S4. Top molecular features used by the random-forest model from the post-challenge phase 

as predictors for “burnt” and "bakery.” (A-B) Each grey dot represents predictions of each of 

the 407 molecules in the training+leaderboard set for “burnt” (A) and “bakery” (B), with 

example molecules indicated by red dots. In (A) only four of the five top features are shown. The 

fifth feature (R3p+; R maximal autocorrelation of lag 3 / weighted by polarizability) is very 
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similar to the feature depicted in the top panel. In (B) only the top feature is shown. The four 

other features in the top 5 (NSPDK_1022278, NSPDK_722140, NSPDK_250366, 

NSPDK_555472) are very similar to the one shown.  
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Fig. S5. Top 5 molecular features used by the random-forest model from the post-challenge 

phase as predictors for “fruit”. Each grey dot represents predictions of each of the 407 

molecules in the training+leaderboard set for “fruit”, with example molecules indicated by red 

dots.  
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Data File S1. Raw data including prediction scores and methods, correlation values, 

molecule CIDs and top molecular features. 
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