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Supplemental Figures

Supplemental Figure 1 - Chemical similarity comparison of all submitted Problem 1 and
Problem 2 solutions.
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Zhaoping Xiong Top Compounds

Supplemental Figure 2 - (A) Similarity heatmap of top predicted compounds for Problem 1
provided by the top-performing teams. Columns correspond to predictions from Zhaoping Xiong,
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while rows correspond to predictions from DMIS-MTD. The majority of compounds are relatively
dissimilar from one another. (B) The similarity matrix was converted into a network, where
nodes are individual predicted compounds and edges encode compound-compound Tanimoto
similarities. Edge thickness represents similarity (thicker edges = greater similarity). Edges
representing similarity below 0.4 were filtered out, and cluster subnetworks were identified (with
each color representing an individual subnetwork).
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Supplemental Figure 3 - Recapitulating Zhaoping Xiong's three-class classification model used for
screening. (A) The distribution of pIC50; (B) The distribution of classes; (C) The accuracy of the model across
train, valid and test sets.
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Supplemental Figure 4 - RET2B and control D. melanogaster were treated with DM SO (negative control),
two candidate RET-targeting compounds identified using top performing methods (ZINC4020 and ZINC9820)
and two positive control multi-targeting RET inhibitors previously demonstrated to rescue the RET2B model
(ADBO0 [27], APS6-45 [20]). Bars show the mean percent survival and error bars show the standard deviation
of four replicates per condition. A Mann-Whitney test was used to assess the significance of changes to percent
survival in the varying conditions. The RET2B Adult panel (bottom right) indicates that higher concentrations
of AD80 or APS6-45 significantly (p<0.05) rescue the RET2B model, while the two candidate ZINC
molecules have a minimal and non statistically-significant effect on percent survival to adulthood.
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Supplemental Table Legends

Supplemental Table 1 - Problem 1 Results. “Submitter or Team” indicates which team
was scored. “Chemical ID” indicates the ZINC or MolPort identifier for each predicted
compound. “InChlKey” indicates the InChiKey for each predicted compound. Columns
4-12 indicate the experimentally-validated binding constant (K4, nanomolar) for the pro-
target or anti-target listed in the column header (>30000 nM indicates it was above the
detection limit for the assay). Columns 13-16 indicate the status of the compound with
respect to the challenge rules for novelty, drug-like properties, and likelihood to pass the
CNS as defined in the challenge scoring rules. The final column indicates the number
of points the prediction was given based on the defined scoring criteria.

Supplemental Table 2 - Problem 2 Results. “Submitter or Team” indicates which team
was scored. “Chemical ID” indicates the ZINC or MolPort identifier for each predicted
compound. “InChlKey” indicates the InChiKey for each predicted compound. Columns
4-10 indicate the experimentally-validated binding constant (K4, nanomolar) for the pro-
target or anti-target listed in the column header (>30000 nM indicates it was above the
detection limit for the assay). Columns 11-14 indicate the status of the compound with
respect to the challenge rules for novelty, drug-like properties, and likelihood to pass the
CNS as defined in the challenge scoring rules. The final column indicates the number of
points the prediction was given based on the defined scoring criteria.

Supplemental Table 3 - Zhaoping Xiong’s method predictive performance on
regression models. A summary of the performance of various model architectures
tested by top performer Zhaoping Xiong using root-mean-square-error calculated using
true pIC50 values.

Supplemental Table 4 - Top Problem 1 predictions fail to rescue the RET2B fly
model. The RET2B model was treated with two positive controls expected to rescue
this model (AD80 and APS6-45), a vehicle control (DMSO), and two test compounds
(ZINC4090, ZINC9820) predicted by the challenge results to rescue the RET2B model.
“tx”: the treatment (compound and concentration) used; “genotype”: WT or RET2B flies;
stage: class of counted animal - adult or pupae; “mean_percent_surv’: the mean
percent survival across 4 replicates; “std_dev_survival”: the standard deviation of the
percent survival across 4 replicates.
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Supplemental Table 5 - in silico chemical modeling of Problem 1 predictions from
top performers. Additional hits from top performing teams were characterized using
SwissADME to identify compounds with preferred absorption, distribution, metabolism,
excretion, and other medicinal chemistry properties.
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