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Background
Transcription factors (TFs) are proteins that bind to specific genomic sequences and 
affect numerous cellular processes. They regulate the rates of transcriptional activities of 
downstream genes through such binding events, thus acting as activators or repressors 

Abstract 

Background:  Due to the complexity of the biological systems, the prediction of 
the potential DNA binding sites for transcription factors remains a difficult problem 
in computational biology. Genomic DNA sequences and experimental results from 
parallel sequencing provide available information about the affinity and accessibility 
of genome and are commonly used features in binding sites prediction. The attention 
mechanism in deep learning has shown its capability to learn long-range depend-
encies from sequential data, such as sentences and voices. Until now, no study has 
applied this approach in binding site inference from massively parallel sequencing 
data. The successful applications of attention mechanism in similar input contexts 
motivate us to build and test new methods that can accurately determine the binding 
sites of transcription factors.

Results:  In this study, we propose a novel tool (named DeepGRN) for transcription 
factors binding site prediction based on the combination of two components: single 
attention module and pairwise attention module. The performance of our methods is 
evaluated on the ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction 
Challenge datasets. The results show that DeepGRN achieves higher unified scores in 6 
of 13 targets than any of the top four methods in the DREAM challenge. We also dem-
onstrate that the attention weights learned by the model are correlated with potential 
informative inputs, such as DNase-Seq coverage and motifs, which provide possible 
explanations for the predictive improvements in DeepGRN.

Conclusions:  DeepGRN can automatically and effectively predict transcription fac-
tor binding sites from DNA sequences and DNase-Seq coverage. Furthermore, the 
visualization techniques we developed for the attention modules help to interpret how 
critical patterns from different types of input features are recognized by our model.
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in the gene regulatory networks by controlling the expression level and the protein abun-
dance of their targeted genes [1]. Chromatin immunoprecipitation-sequencing (ChIP-
Seq) is the golden standard to determine the interactions of a TF and all its potential 
binding regions on genomic sequences. However, ChIP-Seq experiments usually require 
reagents and materials that are infeasible to acquire, such as antibodies targeting specific 
TF of interest. Thus, predictions of potential binding sites through computational meth-
ods are considered as alternative solutions. Also, the prediction of binding sites of TFs 
would facilitate many biological studies by providing resources as reference for experi-
mental validation.

Many algorithms have been developed to infer the potential binding sites of different 
TFs, including hidden Markov models [2, 3], hierarchical mixture models [4], support 
vector machines [5, 6], discriminative maximum conditional likelihood [7] and random 
forest [8, 9]. These methods usually rely on prior knowledge about sequence preference, 
such as position weight matrix [10]. However, these features may be less reliable if they 
are generated from inference based methods (such as de-novo motif discovery) when no 
prior knowledge is available [7].

More recently, methods based on deep neural networks (DNNs), such as DeepBind, 
TFImpute, and DeepSEA, have shown performances superior to traditional models [11–
13]. Compared with the conventional methods, deep learning models have their advan-
tages at learning high-level features from data with huge sizes. This property makes 
them ideal for the binding site prediction task since a genome-wide binding profile of a 
TF can be generated from each ChIP-Seq experiment. Unlike many existing models that 
rely on the quality of the input data and labor-intensive feature engineering, deep learn-
ing requires less domain knowledge or data pre-processing and is more powerful when 
there is little or no prior knowledge of potential binding regions. Current studies in the 
protein binding site prediction tasks usually involve the combination of two deep learn-
ing architectures: convolutional neural networks (CNN) and recurrent neural networks 
(RNN). The convolutional layer has the potential to extract local features from different 
genomic signals and regions [14], while the recurrent layer is better at utilizing useful 
information across the entire sequences of data. Several popular methods for binding 
prediction, such as DanQ [15], DeeperBind [16], and FactorNet [17], are built on such 
model architecture.

Recently, the concept of attention mechanism has achieved great success in neural 
machine translation [18] and sentiment analysis [19]. It enhances the ability of DNNs by 
focusing on the information that is highly valuable to successful prediction. Combining 
with RNNs, it allows models to learn the high-level representations of input sequences 
with long-range dependencies. For example, long short-term memory (LSTM) models 
with attention mechanism have been proposed in relation classification [20] and sen-
tence compression [21]. Because of the input context similarities between language pro-
cessing (sentences) and the DNA binding site prediction (sequences and results from 
massively parallel sequencing), similar approaches can be applied improve the perfor-
mance of existing methods [22–24].

Interrogating the input–output relationships for complex models is another important 
task in machine learning. The weights of a deep neural network are usually difficult to 
interpret directly due to their redundancy and nonlinear relationship with the output. 
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Saliency maps and feature importance scores are conventional approaches for model 
interpretation in machine learning involving genomics data [25]. With the application 
of attention mechanism, we are also interested in testing its ability to enhance the inter-
pretability of existing CNN-RNN architecture models.

In this paper, we develop a TF binding prediction tool (DeepGRN) that is based on 
deep learning with attention mechanism. The experimental results demonstrate that our 
approach is competitive among the current state-of-the-art methods. Also, our work can 
be extended to explain the input–output relationships through the learning process. We 
show that the utilization of informative patterns in both DNase-Seq and DNA sequences 
is important for accurate prediction.

Implementation
Datasets from ENCODE‑DREAM challenge

The datasets used for model training and benchmarking are from the 2016 ENCODE-
DREAM in  vivo Transcription Factor Binding Site Prediction Challenge. The detailed 
description of the pre-processing of the data can be found at https​://www.synap​
se.org/#!Synap​se:syn61​31484​/.

For all TF and cell-types provided in the challenge datasets, the label of the binding 
status of the TFs is generated from ChIP-Seq experiments and used as ground truth. 
Chromatin accessibility information (DNase-Seq data), and RNA-Seq data are provided 
as input features for model training.

For model training, we follow the rules and restrictions of the DREAM challenge: the 
models are trained on all chromosomes except 1, 8, and 21, and chromosome 11 is used 
as validation. The model with the best performance in validation data is used for final 
prediction if no “leaderboard” dataset is provided by the challenge. The leaderboard data 
are available for some TFs for benchmarking, and each participant can test the perfor-
mance on these TFs with up to ten submissions. Thus, if such data are provided, we pick 
the top 10 best models from the first step as an optional model selection step. The final 
performance of our models is reported based on the final test data that are used to deter-
mine the rank of the submissions in the challenge (Figure S1 and Table  S1, see Addi-
tional file 1). We use the similar organization of input features introduced by FactorNet 
[17]: DNA Primary sequence, Chromatin accessibility information (DNase-Seq data) are 
transformed into sequential features and become the input of the convolution layers at 
the first part of the models. Gene expression and annotations are transformed into non-
sequential features and feed into the intermediate dense layers of the model (Details are 
described in the “Deep neural network models with attention modules” section).

We also collected DNase and ChIP profiles for additional cell lines from the Encode 
Project (https​://www.encod​eproj​ect.org) and Roadmap Epigenomics databases (http://
www.roadm​apepi​genom​ics.org/data/) to improve the capability of generalization of our 
model. The performance of models trained with and without external datasets are evalu-
ated separately.

Transcription factor binding data

Transcription factor binding data from ChIP-Seq experiments is the target for our pre-
diction. The whole genome is divided into bins of 200 bp with a sliding step size of 50 bp 

https://www.synapse.org/#!Synapse:syn6131484/
https://www.synapse.org/#!Synapse:syn6131484/
https://www.encodeproject.org
http://www.roadmapepigenomics.org/data/
http://www.roadmapepigenomics.org/data/
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(i.e., 250-450 bp, 300-500 bp). Each bin falls into one of the three types: bound, unbound, 
or ambiguous, which is determined from the ChIP-Seq results. Bins overlapping with 
peaks and passing the Irreproducible Discovery Rate (IDR) check with a threshold of 5% 
[26] are labeled as bound. Bins that overlap with peaks but fail to pass the reproducibility 
threshold are labeled as ambiguous. All other bins are labeled as unbound. We do not 
use any ambiguous bins during the training or validation process according to the com-
mon practice. Therefore, each bin in the genomic sequence will either be a positive site 
(bounded) or a negative site (unbounded).

DNA primary sequence

Human genome release hg19/GRCh37 is used as the reference genome. In concord-
ance with the common practice of algorithms that perform feature extraction from 
chromatin profile, such as FactorNet[17], DeepSea[12], and DanQ[15], we expand each 
bin by 400 bp in both upstream and downstream, resulting in a 1000 bp input region. 
In addition, we have evaluated the performance of different selections of input ranges 
and showed that range above 600  bp is sufficient to acquire stable prediction perfor-
mance (Figure S2). The sequence of this region is represented by a 1000 × 4 bit matrix 
by 1-hot encoding, with each row represented a nucleotide. Since low mappability 
sequences may introduce bias in parallel sequencing experiments, sequence unique-
ness (also known as “mappability”) is closely related to the quality of sequencing data 
[27]. Thus, we select Duke 35  bp uniqueness score (https​://genom​e.ucsc.edu/cgi-bin/
hgFil​eUi?db=hg19&g=wgEnc​odeMa​pabil​ity) as an extra feature. Scores ranging from 0 
to 1 are assigned to each position as the inverse of occurrences of a sequence with the 
exceptions that the scores of unique sequences are 1 and scores of sequences occurring 
more than four times are 0 [28]. As a result, the sequence uniqueness is represented by 
a 1000 × 1 vector for each input bin. The ENCODE Project Consortium has provided a 
blacklist of genomic regions that produce artifact signals in NGS experiments [29]. We 
exclude input bins overlapping with these regions from training data and set their pre-
diction scores to 0 automatically if they are in target regions of prediction.

DNase‑Seq data

Chromatin accessibility refers to the accessibility of regions on a chromosome and is 
highly correlated with TF binding events [4]. DNase-Seq experiment can be used to 
obtain genome-wide maps of chromatin accessibility information as chromatin acces-
sible regions are usually more sensitive to the endonuclease DNase-I than non-accessible 
regions [30]. DNase-Seq results for all cell-types are provided in the Challenge datasets 
in the BigWig format. Normalized 1 × coverage score is generated from the BAM files 
using deepTools [31] with bin size = 1 and is represented by a 1000 × 1 vector for each 
input bin.

Gene expression and annotation

The annotation feature for each bin is encoded as a binary vector of length 6, with each 
value represent if there is an overlap between the input bin and each of the six genomic 
features (coding regions, intron, promoter, 5′/3′-UTR, and CpG island). We also include 
RNA-Seq data since they can be used to characterize the differences in gene expression 

https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
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levels among different cell-types. Principal Component Analysis (PCA) is performed on 
the Transcripts per Million (TPM) normalized counts from RNA-Seq data of all cell-
types provided by the Challenge. The first eight principal components of a cell-type are 
used as expression scores for all inputs from that cell-type, generating a vector of length 
8. The processed data files for these features are provided in the FactorNet Repository 
(https​://githu​b.com/uci-cbcl/Facto​rNet/tree/maste​r/resou​rces). These non-sequential 
features are fused into the first dense layer in the model.

PhastCons genome conservation tracks

We use the 100-way PhastCons conservation tracks [32] as a feature for additional mod-
els. The PhastCons scores are represented as base-by-base conservation scores gener-
ated from multiple alignments of 99 vertebrates to the human genome. Conserved 
elements along the genome are recognized from phylogenetic models, and the conserva-
tion score for each base is computed as the probability that it locates in such conserved 
regions. For each input bin, the PhastCons scores are represented as a vector of L × 1 
with a range from 0 to 1.

CpG island feature profiling

We use the CGI score derived from Mocap [33] to profile the epigenomic environment 
for each input region. The CGI score can be calculated as:

For each input bin, the CGI scores are represented as a vector of L × 1 with binary val-
ues of 0 or 1.

Deep neural network models with attention modules

The shape of each sequential input is L × (4 + 1 + 1) for each region with length L after 
combining all sequential features (DNA sequence, sequence uniqueness, and Chroma-
tin accessibility). Sequential inputs are generated for both the forward strand and the 
reverse complement strand. The weights in all layers of the model are shared between 
both inputs to form a “Siamese” architecture [17, 34, 35]. Vectors of non-sequential fea-
tures from gene expression data and genomic annotations are fused into the model at 
the first dense layer. The overall architecture of our model is shown in Fig. 1. The model 
is built with two major modules: single attention and pairwise attention. They use the 
same input and architecture except for their internal attention mechanism. The final 
result of our model is the average of the output of two modules.

The first part of our model is a 1D convolutional layer, which is a common practice 
for feature extraction in deep learning models involving genomics data [13, 17]. We 
use Bidirectional Long Short-term Memory (Bi-LSTM) nodes as recurrent units in our 
model. The computation steps in an LSTM unit can be written as:

CGI
(
NCpG ,NC ,NG , L

)
=

{
1 if

NCpGL

((NC+NG)/2)
2 > 0.6 and NC+NG

L > 0.5

0 otherwise

(1)ft = σ
(
Wf · [ht−1, xt ]+ bf

)

https://github.com/uci-cbcl/FactorNet/tree/master/resources
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where ft , it , and ot are the forget gate, input gate, and output gate. ht−1 and ht are the 
hidden state vectors at position t − 1 and t . xt is the input vector at position t . [ht−1, xt ] 
stands for vector concatenation operation. Ct−1 , C̃t  and Ct are output cell state at posi-
tion t − 1 , new cell state at position t, and output cell state at position t , respectively. 
Wf  , Wi , WC , and Wo are learned weight matrices. bf  , bi , bC , and bo are learned bias vector 
parameters for each gate. σ and tanh are sigmoid function and hyperbolic tangent func-
tion, respectively.

(2)it = σ(Wi · [ht−1, xt ]+ bi)

(3)C̃t = tanh(WC · [ht−1, xt ]+ bC)

(4)C̃t = ft ∗ Ct−1 + it ∗ C̃t

(5)ot = σ(Wo · [ht−1, xt ]+ bo)

(6)ht = ot ∗ tanh
(
C̃t

)

Fig. 1  The general framework of the two attention modules of DeepGRN. The diagram of the deep neural 
network architecture. Convolutional and bidirectional LSTM layers use both forward and reverse complement 
features as inputs. In the single attention module, attention weights are computed from hidden outputs 
of LSTM and are used to generate the weighted representation through an element-wise multiplication. In 
the pairwise attention module, three components: Q(query), K(key), and V(value) are computed from LSTM 
output. The multiplication of Q and transpose of K are used to calculate the attention weights for each 
position of V. The multiplication of V and attention scores is the output of the pairwise attention module. 
Outputs from attention layers are flattened and fused with non-sequential features (genomic annotation and 
gene expression). The final score is computed through dense layers with sigmoid activation and merging 
of both forward and reverse complement inputs. The dimensions of each layer are shown beside each 
component
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In Bi-LSTM layers, two copies of the inputs of LSTM are rearranged into two direc-
tions: one for the forward direction and one for the backward direction, and they go 
into the LSTM unit separately. The outputs from two directions are concatenated at 
the last dimension. Thus, the last dimension of the Bi-LSTM output is two times of 
the last dimension of the input.

In the single attention module, suppose its input vector h has shape l by r , we first 
computed the unnormalized attention score e = M × h where M is a weight matrix with 
shape l by l , and e has shape l by r . A learned bias of shape l by r is added to e after 
the multiplication. This can be summarized as a dense layer operation fatt,r on input h . 
Then, we apply the Softmax function along the first dimension of e in order to get the 
normalized attention score α . Finally, the weighted output Z will be computed based on 
the attention weight α . At dimension r of input h , these steps can be written as follows:

Here, er is the unnormalized attention score at dimension r . Vector αi,r represents 
attention weight at dimension r of position i and is normalized by Softmax function. The 
attention dimension r in our model will stay unchanged during the transformations. The 
dimension of the attention weights can be reduced from N × r to N × 1 by averaging 
at each position. The final output zi,r is computed based on the corresponding attention 
score. After the attention layers, the prediction scores are computed from dense layers 
with sigmoid activation function and merged from both forward and reverse comple-
ment inputs.

In the pairwise attention module, there are three components: Q(query), K(key) and 
V(value). Their values are computed from LSTM output from three different trainable 
weight matrices. The dimension of the trained weights for Q, K and V are l by dk , l by dk 
and l by dv where dk and dv are set as 64 as the default setup described in [36]. The mul-
tiplication of Q and transpose of K are used to compute the attention weights for each 
position of V after Softmax conversion and dimension normalization. The multiplication 
of V and attention weights are the output of the pairwise attention module. The output 
of the pairwise attention module is computed as:

(7)er = fatt,r
(
h1,r , h2,r , ..., hN ,r

)

(8)αi,r = exp
(
ei,r

)
/

N∑

k=1

exp
(
ek ,r

)

(9)αi = (

R∑

r=1

αi,r)/D

(10)zi,r = hi,r∗αi
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Since each position in the sequential features simultaneously flows through the 
pairwise attention module, the pairwise attention module itself is not able to sense the 
position and order from the sequential input. To address this, we add the positional 
encodings to the input of the pairwise attention. We expect this additional encoding 
will enhance the ability of the model to make use of the order of the sequence. The 
positional encodings have the same dimension d as the input of the pairwise attention 
module. In this work, we choose different frequencies sine and cosine functions [37] 
to encode the positional information:

where pos is the position in the sequential input, and i is the index of the last 
dimension of the model. The resulting positional encodings vector is added to its 
input. Through such encoding technique, the relative position information can be 
learned by the model since for any fixed offset k , PE(pos+k) can be represented as 
PE(pos,2i)cos

(
100002k/d

)
+ PE(pos,2i+1)sin

(
100002k/d

)
 , which is the linear combination of 

PE(pos) . Similarly, this also applies to dimensions of 2i + 1 as well.
The single attention module is designed to represent the importance of different 

regions along with the sequential input, while the pairwise attention module seeks to 
attend the importance between each pair of positions across the sequential input. We 
expect this difference in architecture will help to improve the learning ability of the 
model in a complementary manner.

We tested different configurations for typical hyperparameters (learning rate, 
network depth, dropout rates) and the hyperparameters specific to our model (the 
dimension of attention weights, merging function the two output scores) during 
training. The complete description of hyperparameters and their possible options 
are summarized in Table S2 [see Additional file 1]. We train one model for each TF, 
resulting in 12 models in total. The single and pairwise attention module will always 
use the same configuration rather than train separately.

There are 51,676,736 bins in total on training chromosomes in the labels, result-
ing in 51676736× n potential training samples for each TF, where n is the number of 
available cell-types for training. Due to limited computing capacity, we use the itera-
tive training process. During training, the training data is the mixture of all positives 
(labeled as “B”) with downsampled negatives (labeled as “U”) [17]. In the traditional 
model training in deep learning, all input data are used to update the model weights 
exactly once for each epoch. However, this is not applicable in our task since the neg-
ative samples (regions do not bind to TFs) are much more abundant than the posi-
tive samples (regions bind to TFs), and use all negative samples for training in one 
epoch is not practical since the number of them is extremely huge (as they cover most 

(11)Z = Softmax

(
Q × KT

√
dk

)
× V

(12)PE(pos,2i) = sin
(
pos/100002i/d

)

(13)PE(pos,2i+1) = cos
(
pos/100002i/d

)
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of the human genome). Thus, in each epoch during model training, we first sample 
negative samples with numbers proportional to the number of all positive samples, 
and combine these negative samples with all positive samples for training. We will 
re-sample the negative bins and start another round of model training (next epoch). 
To make the training process more effective, we use a different strategy to generate 
positive training samples for transcription factors that have a large number of positive 
labels (CTCF, FOXA1, HNF4A, MAX, REST and JUND). For these TFs, we randomly 
sample a 200-bp region from each ChIP-Seq peak in the narrow peak data as posi-
tive instances for training instead of using all positive samples in each epoch. We use 
the Adam [38] optimizer with binary cross-entropy as the loss function. The default 
number of epochs is set to 60, but the training will be early stopped if there are no 
improvements in validation auPRC for five consecutive epochs. For detailed instruc-
tions about data retrieving, training, prediction, and visualization with our programs, 
please see Additional file 2.

Results
Overall benchmarking on evaluation data

We list the performance of our model as four metrics used in the DREAM Challenge 
(Table  1) and compare them with the unified score from the top four teams in the 
final leaderboard of the ENCODE-DREAM Challenge (Table  2). The unified score 
for each TF and cell-type is based on the rank of each metric and is computed as: ∑

ln(r/(6)) where r is the rank of the method for one specific performance meas-
ure (auROC, auPRC, Recall at 50% FDR and Recall at 10% FDR). Thus, smaller scores 
indicate better performance. The TFs, chromosomes, and cell-types for evaluation are 
the same as those used for the final rankings. DeepGRN typically achieves auROC 
scores above 98% for most of the TF/cell type pairs, reaching as low.

Table 1  The performance of DeepGRN with four metrics used in the DREAM Challenge

TF name Cell-type auROC auPRC Recall at 50% 
FDR

Recall 
at 10% 
FDR

CTCF PC-3 0.987 0.767 0.766 0.603

CTCF induced pluripotent stem cell 0.998 0.902 0.945 0.744

E2F1 K562 0.989 0.404 0.388 0.100

EGR1 liver 0.993 0.405 0.318 0.021

FOXA1 liver 0.985 0.546 0.584 0.164

FOXA2 liver 0.984 0.548 0.588 0.143

GABPA liver 0.991 0.516 0.488 0.154

HNF4A liver 0.971 0.636 0.700 0.263

JUND liver 0.983 0.535 0.585 0.027

MAX liver 0.990 0.425 0.349 0.004

NANOG induced pluripotent stem cell 0.996 0.499 0.515 0.035

REST liver 0.986 0.482 0.527 0.030

TAF1 liver 0.989 0.424 0.393 0.000
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as 97.1% for HNF4A/liver. The scores of auPRC have a more extensive range of val-
ues, from 40.4% for E2F1/ K562 to 90.2% for CTCF/iPSC.

For each TF and cell-type combination, our attention model has better performance 
on 69% (9/13) of the prediction targets than Anchor [39], 85% (11/13) than FactorNet 
[17], 85% (11/13) than Cheburashka [7], and 77% (10/13) than Catchitt [40]. Among 
all methods benchmarked, our method has the highest ranking in 7 out of 13 targets 
(CTCF/iPSC, FOXA1/liver, FOXA2/liver, GABPA/liver, HNF4A/liver, NANOG/iPSC, 
and REST/liver), with the best average score (0.31) across all TF/ cell-types pairs 
(Table 2).

To precisely evaluate the capability of deepGRN under the restrictions of the 
ENCODE DREAM Challenge, we also compared the performance of deepGRN 
trained using datasets provided by the challenge with four available features: Genomic 

Table 2  The unified scores of  DeepGRN and  the  top four algorithms in  the  DREAM 
Challenge

Bold scores denote the TF and cell-types that DeepGRN rank as the highest

TF Cell Anchor FactorNet Cheburashka Catchitt DeepGRN

CTCF PC-3 0.67 0.17 0.83 0.5 0.33

CTCF induced pluripotent stem cell 0.83 0.33 0.67 0.5 0.17
E2F1 K562 0.5 0.83 0.67 0.17 0.33

EGR1 liver 0.17 0.83 0.67 0.33 0.5

FOXA1 liver 0.67 0.33 0.83 0.5 0.17
FOXA2 liver 0.33 0.83 0.67 0.5 0.17
GABPA liver 0.33 0.83 0.67 0.5 0.17
HNF4A liver 0.67 0.33 0.83 0.5 0.17
JUND liver 0.17 0.83 0.67 0.5 0.33

MAX liver 0.17 0.83 0.33 0.67 0.5

NANOG induced pluripotent stem cell 0.33 0.5 0.83 0.67 0.17
REST liver 0.67 0.33 0.83 0.5 0.17
TAF1 liver 0.17 0.5 0.67 0.33 0.83

Fig. 2  Comparision of the deep learning models with and without attention mechanism
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sequence features, DNase-Seq and RNA-Seq data. The results are summarized in 
Table S3 and S4. DeepGRN still achieves the highest ranking in 6 out of 13 targets, 
with the best average unified score (0.33) across all targets. We also compared our 
results with models without the attention component using the four challenge fea-
tures. We built these models using the same architecture as deepGRN models, except 
for the attention component and trained them with the same hyperparameter selec-
tion process. The results are shown in Fig.  2. DeepGRN with attention mechanism 
outperforms the models without attention in 11 out of 13 targets by the auPRC met-
ric, with the largest difference from target REST (0.168).

Performance comparison between two attention modules

In addition to the comparisons with the top 4 methods in the challenge, we also 
benchmarked the individual performance of the single and pairwise attention module 
(Table S5, see Additional file 1). In general, the results extracted from the single atten-
tion module have similar performances. For all 13 TF and cell-type pairs, the single 
attention module has higher auROC in 6 targets while the pairwise attention module has 

Fig. 3  Performance comparison between single and pairwise attention mechanism. The performance of 
each TF and cell-type pairs of the output of the individual module are shown in four measures: (auROC, 
auPRC, recall at 50% FDR and Recall at 10% FDR). ρ: Pearson Correlation Coefficient, σ: Spearman Correlation 
Coefficient
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higher auROC in 3 targets. The rest of the targets are tied. The final output of the model 
is the ensemble of these two modules by averaging, and it outperforms any of the indi-
vidual attention modules in 10 of 13 targets (Table 1). The largest improvements from 
ensemble (as auPRC) come from FOXA2 (0.34), REST (0.09) and FOXA1 (0.09). We also 
found that the performance of the two attention modules have the same trend across all 
TF and cell-types in all four performance measures (Fig. 3), suggesting that the capabil-
ity of learning from features are coherent between the two modules.

We evaluated the importance of each feature between single and pairwise attention 
mechanism. For the prediction of each target, we set the values of each sequential fea-
ture (DNase-Seq, sequence, or uniqueness) to zero, or randomly switch the order of 
the vector for a non-sequential feature (genomic elements or RNA-Seq). The decrease 
of auPRC from these new predictions is used as the importance score of each feature 
(Fig.  4). We found that across all TF and cell-types, the sequential features have the 
largest average importance scores: DNase-Seq (0.36), DNA sequence (0.21), and 35 bp 
uniqueness (0.21) while the scores for other features are much smaller. Similar trends 
have also been found using individual single and pair attention modules.

Interpretation of attention scores with DNase‑Seq and ChIP‑Seq

In the single attention module, the output is a weighted sum of the input from the 
attention layer, and the attention scores are used as weights. These scores characterize 
a unified mapping between the importance of input feature with its relative position 
in the sequential input. To analyze the relationship between attention weights and the 
position of TF binding events, we extract the attention scores from the single atten-
tion module for both forward strand and reverse complement strand and compare 
them with the corresponding normalized ChIP-Seq fold changes in the same region 

Fig. 4  Importance score of features between single and pairwise attention mechanism. The values 
represented as the decrease of auPRC without using the specific feature for prediction. The negative value 
represents an increase of auPRC
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that are predicted as positive (score > 0.5). Similarly, we computed the saliency scores 
for the same input regions (The implementation details are described in Additional 
file 1). We found that the attention scores on the two DNA strands have a higher cor-
relation (ρ = 0.90, σ = 0.79) than the saliency scores (ρ = 0.78, σ = 0.51) (Fig.  5a, b). 
Across all TF and cell-type pairs, we found that there is a positive correlation between 
the attention weights and normalized ChIP-Seq Fold (Fig. 5c), and such relationship 
is not detected globally in saliency scores (Fig.  5d). For all TF and cell-types in the 
benchmark datasets, we select at least four different genomic regions that have a clear 
ChIP-Seq peak signal in each target for demonstration. We show that the averaged 
attention weights put more focus on the actual binding region for each cell-type and 

Fig. 5  Analysis of attention weights and saliency scores. (a) Scatterplot of attention weights from positive 
strand and reverse strand. (b) Scatterplot of saliency scores from positive strand and reverse strand. (c) 
Scatterplot of ChIP-Seq fold change and mean attention weights from both strands. Z-score transformation 
is applied to both axes. (d) Distribution of the correlation between attention weights/saliency scores and 
ChIP-Seq fold change. The dashed line represents the mean of each group. The p-value is calculated using 
the Wilcoxon signed-rank test. The attention weights and saliency scores on the reverse complement strand 
are reversed before plotting. ρ: Spearman Correlation Coefficient, σ: Pearson Correlation Coefficient. The 
correlation between normalized ChIP-Seq Fold change and normalized saliency scores is 0.40 (Spearman) 
and 0.49 (Pearson)



Page 14 of 18Chen et al. BMC Bioinformatics           (2021) 22:38 

these focusing points shift along with the shift of TF binding signals (see Additional 
file 3).

Since the accessibility of the genome plays an important role in TF binding, it is 
expected to find high DNase coverage for those openly accessible areas that can 
explain the binding event detected by the ChIP-Seq experiment. We run a genome-
wide analysis on regions with high DNase-Seq peaks in the single attention module 
for transcription factor JUND, which is one of the most susceptible targets to DNase-
Seq. We illustrate the distribution of normalized DNase coverage values from both 
the true positives that are false negatives without attention and true negatives that 
are false positives without attention (Fig. 6). The results show that the true positives 
that are only recognized by attention models generally have a smaller DNase cover-
age than those recognized by both models. This observation indicates that the predic-
tive improvements of attention models may result from focusing on more informative 
DNase-Seq coverage values while ignoring irrelevant regions in negative samples.

Motif detection over high attention scores regions

For those positive samples without distinct DNase-Seq peaks, the patterns of genomic 
sequences are critical information for successful prediction. To test the ability of 
attention weights to recognize motifs that contribute to binding events from the 
genomic sequences, we use an approach similar to DeepBind [13]. For the model 
trained for each TF, we first acquire the coordinates on the relative positions of maxi-
mum column sum of the attention weights from all positive bins in test datasets and 
extract a subsequence with a length of 20 bp around each coordinate. To exclude sam-
ples that can be easily classified from patterns of DNase-Seq signal, we only select 
positive bins that have no significant coverage peaks (ratio between the highest score 
and average scores < 15). Then we run FIMO [41] to detect known motifs relevant to 
the TF of the model in the JASPAR database [42]. From the extracted subsequences, 
we discover motif MA0139.1 (CTCF) in the prediction for CTCF/induced pluripotent 

Fig. 6  Distribution of average normalized DNase coverage values of different regions with the inputs of 
JUND. The predictions from both models with and without attention from our training are evaluated by 
the true positive labels. Then the average normalized DNase coverage is calculated based on bins classified 
differently by the two models
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cell and MA0148.4 (FOXA1) in the prediction for FOXA1/liver cell. Figure 7a and b 
show the comparison between the sequence logo of the motif rebuilt from the subse-
quences and the actual known motifs. We also plot the attention scores of the samples 
that contain these subsequences (Fig.  7c, f ) and the relative location of the regions 
with detected motifs in FIMO (Fig. 7d, g). Furthermore, we show that these maximum 
attention weights do not come from the DNase-Seq peaks near the motif regions by 
coincidence since no similar pattern is detected from the normalized DNase scores in 
the same regions (Fig. 7e, h). We illustrate the similar trends found in the single atten-
tion module in Figure S3 [see Additional file 1].

Discussion
The attention mechanism is attractive in various machine learning studies and has 
achieved superior performance in image caption generation and natural language process-
ing tasks [37, 43]. Recurrent neural network models with attention mechanism are par-
ticularly good at tasks with long-range dependency in input data. Inspired by these works, 
we introduce the attention mechanism to DNN models for TF binding site prediction.

The benchmark result using ENCODE-DREAM Challenge datasets shows that the per-
formances of our model are competitive with the current state-of-the-art methods. It is 
worth mentioning that the DNase-Seq scores are the most critical feature in the attention 
mechanism from our experiments according to the feature importance analysis. Many 
prediction tools for binding site prediction before the challenge, such as DeepBind or 
TFImpute, are not able to utilize the DNase-Seq data and are not as suitable as the four 
methods that we used for benchmarking in this study. However, the methods we bench-
marked in this study share the similar concepts with these existing tools (For example, 

Fig. 7  Comparisons of known motifs and matching motifs learned by pairwise attention module in 
CTCF and FOXA1. (a) Sequence logo built from subsequences detected in CTCF/induced pluripotent cell 
prediction (left) and motif MA0139.1/ CTCF (right). (b) The attention scores of the samples selected from 
CTCF/induced pluripotent cell prediction with hits of MA0139.1/ CTCF in FIMO. (c)The relative positions of the 
detected motifs in the same region of (b). (d) The normalized DNase-Seq scores in the same region of (b). (e) 
Sequence logo built from subsequences detected in FOXA1/liver cell prediction (left) and motif MA0148.4/ 
FOXA1 (right). (f) The attention scores of the samples selected from FOXA1/liver cell prediction with hits of 
MA0148.4/ FOXA1 in FIMO. (g) The relative positions of the detected motifs in the same region of (f). (h) The 
normalized DNase-Seq scores in the same region of (f )
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FactorNet is built with similar architecture as the TFImpute with additional support for 
the DNase-Seq data) and may reflect the potential of them using the same set of features.

The attention weights learned by the models provide an alternative approach to explor-
ing the dependencies between input and output other than saliency maps. By comparing 
true ChIP-Seq fold change peaks with attention weights, we show how attention weights 
shift when the fold change peaks move along the DNA sequence. We also demonstrate 
that our attention model has the ability to learn from known motifs related to specific TFs.

Due to the rules of the DREAM Challenge, we only use very limited types of features 
in this work. However, if more types of features (such as sequence conservation or epi-
genetic modifications) are available, they can possibly be transformed into sequential 
formats and may further improve the prediction performance through our attention 
architecture. The attention mechanism itself is also evolving rapidly. For example, the 
multi-head attention introduced by Transformer [37] showed that high-level features 
could be learned by attention without relying on any recurrent or convolution layers. We 
expect that better prediction for the TF binding may also be benefited from these novel 
deep learning architectures in both accuracy and efficacy.

Conclusions
In this study, we propose a new tool (DeepGRN) that incorporates the attention mecha-
nism with the CNNs-RNNs based architecture. The result shows that the performances 
of our models are competitive with the top 4 methods in the Challenge leaderboard. We 
demonstrate that the attention modules in our model help to interpret how critical pat-
terns from different types of input features are recognized.

Availability and requirements

Project name: DeepGRN
Project home page: https://github.com/jianlin-cheng/DeepGRN.
Operating system(s): Linux, Mac OS, Windows.
Programming language: Python, R.
Other requirements: Python version 3.6.0 or higher, R version 3.3.0 or higher.
License: GNU GPL.
Any restrictions to use by non-academics: None.
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