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Abstract
DREAM challenges are community competitions designed to advance
computational methods and address fundamental questions in system
biology and translational medicine. Each challenge asks participants to
develop and apply computational methods to either predict unobserved
outcomes or to identify unknown model parameters given a set of training
data. Computational methods are evaluated using an automated scoring
metric, scores are posted to a public leaderboard, and methods are
published to facilitate community discussions on how to build improved
methods. By engaging participants from a wide range of science and
engineering backgrounds, DREAM challenges can comparatively evaluate
a wide range of statistical, machine learning, and biophysical methods.
Here, we describe  , a Python package for evaluating DREAMDREAMTools
challenge scoring metrics.  provides a command line interfaceDREAMTools 
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Any reports and responses or comments on the
article can be found at the end of the article.

Here, we describe  , a Python package for evaluating DREAMDREAMTools
challenge scoring metrics.  provides a command line interfaceDREAMTools 
that enables researchers to test new methods on past challenges, as well
as a framework for scoring new challenges. As of March 2016, 

includes more than 80% of completed DREAM challenges. DREAMTools 
complements the data, metadata, and software toolsDREAMTools 

available at the DREAM website   and on the http://dreamchallenges.org
 platform at  .Synapse https://www.synapse.org

   is a Python package. Releases andAvailability: DREAMTools
documentation are available at  . Thehttp://pypi.python.org/pypi/dreamtools
source code is available at  .http://github.com/dreamtools/dreamtools

Keywords
DREAM , collaborative competition , machine learning , crowdsourcing ,
systems biology , translational medicine , method evaluation ,
benchmarking
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            Amendments from Version 1

One issue about the first version of the paper was related to the 
installation of the software itself. Indeed, dependencies on several 
(established) Python scientific software required long compilation 
time and sometimes compilation failure. This is a general issue but 
following comments and discussions with the referees, we decided 
to explore a solution based on Anaconda (http://anaconda.org) 
and we updated the software accordingly.

As compared to the previous version, we now provide pre-compiled 
versions of DREAMTools for Linux and MacOSX platforms. We 
do so via the bioconda channel (https://bioconda.github.io/) of 
Anaconda.

This new feature is documented in the paper (see “installation section”) 
and the on-line documentation (dreamtools.readthedocs.org).

The text was not changed significantly except for the “installation 
section” and a couple of new paragraphs in the supplementary 
data (about statistical metrics used in the challenges). 

See referee reports

REVISED

Introduction
Crowd-sourcing has gained considerable attention over the last 
years as an approach to solve complex problems. A specific variant 
of crowd-sourcing is based on setting up challenges or collabo-
rative competitions, whereby the scientific community is invited 
to provide solutions for a given problem. Typically, the challenge 
organizers withhold a gold standard and use it to evaluate the 
performance of the submissions by comparing the latter to the 
former. At the end of such an exercise, the organizers perform a 
meta analysis with the aim of deriving lessons about which type 
of methods seem to be more suitable, which features seem to be 
good predictors regardless of the method, etc. Importantly, the 
challenge’s results remain as a resource for the community rep-
resenting a snapshot of the state-of-the-art and to aide in further 
method development and benchmarking.

In the context of computational biology, there have been several 
of these initiatives, including CASP, CAFA, CAPRI, FlowCAP1, 
CAGI, and Dialogue for Reverse Engineering Assessment and 
Methods (DREAM; www.dreamchallenges.org)2. The DREAM 
challenges started with a focus on the field of biomolecular net-
work inference3–5 but now cover questions ranging from prediction 
of transcription factor sequence specificity6, to toxicity of chemi-
cal compounds7 and the progression of Amyotropic Lateral Scle-
rosis (ALS) patients8 or survival of breast cancer patients9. Since 
2013, DREAM has partnered with Sage Bionetworks and chal-
lenges are hosted on Sage’s Synapse platform. Each challenge has 
a dedicated project space in Synapse where the description, train-
ing data set, gold standard and scoring methodology are provided. 
The scored predictions are also available on a public leaderboard.

A fundamental step in DREAM challenges, or any other collabora-
tive competition, is to assess how well the different predictions fare 
against the gold standard. This may seem obvious at first glance; 

for example, for a question of predicting a set of numbers, one can 
compute the sum of the squared differences between predicted and 
observed values, and identify the submission for which this sum 
is the smallest. However, multiple aspects have to be taken into 
account such as the fact that often the confidence on the different 
measured values is not the same, or that the differences between 
the submissions may or may not be different enough to declare one 
method superior to the other. Over the years, within the DREAM 
challenges, these questions have been addressed leading to the 
generation of multiple scoring methods.

Scoring methods developed by challenge organizers are reported in 
the publications that describe the challenges, but the corresponding 
code is typically provided only in pseudo-code or at best as a script 
in an arbitrary language (R, Python, Perl...) and syntax by differ-
ent developers leading to a set of heterogeneous code. In addition, 
templates and gold standards need to be retrieved manually. All 
of these factors present obstacles to maximize the scientific value 
of DREAM challenges as a framework for a posteriori evaluation 
of a method’s performance in comparison with those used in the 
challenges. Similarly, reuse of scoring code for future challenges 
becomes complicated when at all possible.

To facilitate the a posteriori use of the challenges resources by the 
scientific community, we have gathered DREAM scoring functions 
within a single software called DREAMTools that provides a single 
entry point to the DREAM scoring functions. We also provide a stan-
dalone executable for end-users and the ability to share and re-use 
existing code within a common framework to ease the development 
of new scoring functions for future challenges. DREAMTools does 
not provide code to generate the data or to manage leaderboards 
(which happens within Synapse), but focuses on the scoring func-
tions. Note that organizers interested in setting up automatic scoring 
and publishing of leaderboards should instead refer to the section 
“Create a Scoring application” from the Synapse project 2453886. 
Currently, DREAMTools includes about 80% of the past challenges. 
For a few challenges where integration in DREAMTools was not 
possible, references to external resources are provided.

Here, we first describe the framework used in DREAMTools 
software from the point of view of both an organizer/developer and 
an end-user (see Figure 1). We then review the challenges and the 
scoring functions that are available until now.

Methods
The diversity of challenges proposed by DREAM (see Available 
challenges section) and the plethora of languages that have been 
used in past challenges has led to a fragmentation of the software 
designed to score submissions. In order to tackle this problem, we 
chose Python as a glue language. In addition to a clear syntax and 
the ability to scale-up software, Python can include compiled codes 
(e.g., Fortran and C) or call other scripting languages (Perl, R). 
Besides, languages such as Ruby or MATLAB can also be easily trans-
lated to Python, which was an invaluable asset to incorporate many 
of the earlier challenges that were originally encoded in MATLAB.
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DREAMTools is an open-source library. Consequently, it can be used 
directly to evaluate a method against the gold standard of the corre-
sponding challenge, and can also be used as a framework to develop 
further scoring schemes within the DREAM umbrella or elsewhere.

With about four challenges a year, we use a convention to easily 
refer to a given DREAM challenge. We decided to closely follow 
the convention adopted on the DREAM website and use a nick-
name that takes the form DXCY, where X is set to the DREAM 
version and Y is set to the challenge number. For example, the HPN-
DREAM Breast Cancer challenge10 will be referred to as D8C1. If a 
challenge has sub-challenges, we will also need to provide names to 
identify them. We do not enforce any convention on sub-challenge 
names. The nicknames can be found here below in Table 1.

In this section we provide a brief overview of the scoring functions; 
for further details we point the reader to the detailed documenta-
tion on Read The Docs (https://dreamtools.readthedocs.org).

DREAMTools for end-users: The dreamtools executable
DREAMTools provides a standalone application called dreamtools, 
which is installed with the DREAMTools library (see Installation 

section for details). Note that the application’s name uses lower 
cases to facilitate the user’s experience. The dreamtools application 
needs a few arguments. The first argument is the challenge name 
using --challenge followed by the challenge nickname (e.g., D7C2). 
The second compulsory argument is the filename containing the 
prediction or submission using the --submission or --filename argu-
ment. Some challenges have sub-challenges, in which case an extra 
argument called --sub-challenge is added. Let us consider the case 
of the D3C3 challenge (Gene Expression Prediction)11. In order to 
obtain the score, call dreamtools as follows:

 dreamtools --challenge D3C3 --filename

     template.csv

The scoring function of that particular challenge returns a score 
based on a Spearman rank correlation. Other challenges may return 
more complex information.

The dreamtools standalone application allows one to quickly com-
pute the score of a prediction. However, users or developers may 

Figure 1. DREAMTools library framework. DREAM challenges are described at the DREAM website (http://dreamchallenges.org) where 
researchers can get an overview of the past and current challenges. Each challenge has its own project page within the Synapse framework 
(http://synapse.org) where details about the challenge are available. The final leaderboard showing benchmarks achieved at the end of the 
challenge are also shown in the Synapse project. DREAMTools provides a Python library that allows researchers to retrieve a template for each 
closed challenge and to easily score a prediction/template against the gold standard. In a few lines of code, the score of a prediction can then 
be compared to the official leaderboard, as illustrated in the example in the green box on the right hand side of the figure.
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Table 1. Availability of the DREAM scoring functions within DREAMTools. The first column provides the nickname used 
in DREAMTools to refer to a challenge. The challenge’s title (second column) and its Synapse identifier (fourth column) can 
be used to retrieve all details about a challenge. The third column gives the challenge status within DREAMTools: most of the 
challenges’ scoring functions are implemented in DREAMTools (green boxes); open challenges are not yet available (blue 
boxes); a couple of challenges did not release the gold standard and may not be implemented (red boxes labelled ’No GS’ 
for no gold standard); some are to be implemented in future releases (orange boxes labelled ’TBD’ for to be done).

DREAM Nickname Title Availability Synapse ID

D2C1 BCL6 Transcriptional Target Prediction Implemented 3034857

D2C2 Protein-Protein Interaction Network Inference Implemented 2825374

D2C3 Synthetic Five-Gene Network Inference Implemented 3034869

D2C4 In Silico Network Inference Implemented 2825394

D2C5 Genome-Scale Network Inference Implemented 3034894

D3C1 Signaling Cascade Identification Implemented 3033068

D3C2 Signaling Response Prediction Implemented 3825325

D3C3 Gene Expression Prediction Implemented 3033083

D3C4 In Silico Network Implemented 2853594

D4C1 Peptide Recognition Domain Specificity Prediction Implemented 2925957

D4C2 In silico Network Challenge Implemented 2925957

D4C3 Predictive Signaling Network Modeling Implemented 2825304

D5C1 Epitope-Antibody Recognition Specificity Prediction Implemented 2820433

D5C2 Transcription Factor DNA Motif Recognition Implemented 2887863

D5C3 Systems Genetics Challenge,B Implemented 2820440

D5C4 Network Inference Challenge Implemented 2787209

D6C1 Alternative Splicing TBD 2817724

D6C2 see D7C1 Implemented 2841366

D6C3 Gene Expression Prediction Implemented 2820426

D6C4 FlowCAP2 Molecular Classification of Acute Myeloid LeuKaimia Implemented 2887788

D7C1 Network Topology and Parameter Inference Implemented 2821735

D7C2 Breast Cancer Prognosis TBD
2813426 
and 
1710250

D7C3 The DREAM Phil Bowen ALS Prediction Prize4Life Implemented 2826267

D7C4 NCI-DREAM Drug Sensitivity Implemented 2785778

D8C1 HPN-DREAM Breast Cancer Network Inference Implemented 1720047

D8C2 NIEHS-NCATS-UNC DREAM Toxicogenetics Implemented 1761567

D8C3 The Whole-Cell Parameter Estimation TBD 1876068

D8dot5 The Rheumatoid Arthritis Responder Implemented 1734172

D9C1 The Broad-DREAM Gene Essentiality Prediction Implemented 2384331

D9C2 Acute Myeloid Leukemia Outcome Prediction No GS 2455683

D9C3 Alzheimer’s Disease Big Data No GS 2290704

D9C4 ICGC-TCGA-DREAM Somatic Mutation Calling TBD 312572

D9dot5C1 Olfactory Challenge Implemented 2811262

D9dot5C2 Prostate Cancer TBD 2813558

D10C1 DREAM ALS Stratification Prize4Life Open Challenge 2873386

D10C2 ICGC-TCGA-DREAM Somatic Mutation Calling Tumor Heterogeneity Open Challenge 2813581

D10C3 ICGC-TCGA DREAM Somatic Mutation Calling RNA Challenge 
(SMC-RNA) Open Challenge 2813589
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want to script it, which remains concise as shown in the following 
Python script:

1 
2 
3 
4 
5 
6 
7 
8 
  

 # ------ imports the challenge class
 from dreamtools import D3C3
 # ------ creates an instance
 s = D3C3( )
 # ------ retrieves an example
 filename = s.download_template()
 # ------ scores and prints the results
 print(s.score(filename))

Note that all challenges follow the same structure with three main 
functions: to retrieve a template example, to retrieve a gold stand-
ard, and to score a prediction. In addition, dreamtools may give 
access to more functions. For example, the D5C2 challenge6 has a 
plot method to compare a prediction with the official submissions, 
that facilitates inspection of the results, as shown in Figure 2. The 

figure is generated with an IPython notebook12, which is available 
in the source code repository of DREAMTools.

Another useful option from the dreamtools executable is the 
--info option, which provides information such as the title and 
summary of the challenge but also the list of sub-challenges and 
the Synapse project page where all details about the challenge can 
be found:

 dreamtools --challenge D8C1 --info

Templates and gold standards
Most challenges require a gold standard to score a prediction. Small-
size gold standards are provided within the library and, to keep 
DREAMTools light-weight, large-size gold standards are stored 
through Synapse and automatically downloaded when required – 
using the official Synapse client (see Sec about installation and 
dependencies). A similar strategy is applied to templates. Users will 
need to have a login on the Synapse platform to access these files. 

Figure 2. DREAMTools provides scoring methods to score or rank new predictions. However, as shown in this figure, other functions may 
be provided. For instance, the plot() method available in the D5C2 challenge shows 4 sub-figures with the score of a submission (blue square) 
compared to the official participants (black crosses) for 4 metrics (AUROC, AUPR, Spearman versus Pearson correlation). This example is 
available as an IPython notebook in the DREAMTools repository.
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The downloaded files are stored locally in a standard place (e.g., 
/home/user/.config/dreamtools directory under Linux systems).

Users can retrieve the location of the templates and gold standards 
with the dreamtools application as follows:

 dreamtools --challenge D3C1 --download-
     template

If sub-challenges are available, a sub-challenge name must be pro-
vided. The valid sub-challenge names can be obtained with the 
--info argument:

 dreamtools --challenge D8C2 --info

DREAMTools for challenge developers: an easily 
expandable framework
DREAMTools library also provides a framework to ease the addi-
tion of other challenges by encouraging the usage of a consistent 
layout. In order to incorporate a new challenge, a developer can 
look at previous instances and create manually its own tree 
structure. However, we provide another standalone application 
called dreamtools-layout. This application requires only one 
argument: the challenge nickname.

 dreamtools-layout --challenge D10C10

This command creates a directory named after the challenge nick-
name. Inside the directory, sub-directories are created to store the 
templates, gold standards and possibly other data sets. For instance, 
data to compute p-values may be stored in the data directory. Code 
related to training data generation could be stored in the generator 
directory, and so on.

In addition to the tree directory, some files are created amongst 
them a README file that should be filled with information about 
the challenge (e.g. Synapse identifier, acronym, summary) and a 
Python script called scoring.py. The basic structure of the scoring 
script is to provide the same interface for each challenge. In par-
ticular, we enforce the implementation of a function to download a 
template, a function to download a gold standard and a function to 
score the submission. Here is an example of such a file, which needs 
to be filled by the developer:

1 
2 
3 
4 
5 
6 
7 
8 
9 
10
11
   

 from  dreamtools import Challenge
 class D10C10(Challenge):
     def __init__(self):
        super(D10C10, self).__init__()
        self.sub_challenges = [ ]
     def score(self, filename):
         raise NotImplementedError
     def download_template(self):
         return path_to_template
     def download_goldstandard(self):

         return path_to_goldstandard

Using the code above, the challenge will be automatically available 
in the standalone application without extra costs to the developer. 
The download_template( ) method is not strictly speaking required; 
it helps a user to create a prediction though and is provided for 
all challenges. Developers should consider adding tests and 
documentation in the existing framework. The last release of 
DREAMTools contains a test suite (collection of test cases used to 
check the software) with a code coverage higher than 80%; it guar-
antees that the DREAMTools functionalities (especially the scoring 
functions) do work as expected.

Installation and dependencies
The DREAMTools source code is available on GitHub. It can be 
downloaded and installed as follows:

 > git clone git@github.com:dreamtools/
    dreamtools.git
 > cd dreamtools
 > python setup.py install

The source code gives access to the latest version but releases are 
also provided on the Python repository website (Pypi) and conse-
quently installation is also possible using the pip tool:

 > pip install dreamtools

DREAMTools relies on established scientific libraries such as 
Pandas13 for the data mangling, SciKit-learn14 (e.g., ROC curves) 
and more generally NumPy/SciPy15 for statistical analysis. Those 
libraries are recognized in the scientific community and there is an 
ample set of online resources that cover installation procedure.

Yet, the compilation of these libraries may take a while or lead to 
compilation errors on some machine configuration. Consequently, 
we also provide a pre-compiled version of DREAMTools within 
the bio channel (http://bioconda.github.io), which is a channel of 
Anaconda (https://www.continuum.io/downloads). The latter pro-
vides about 400 scientific packages including Numpy and Pandas 
aforementioned.

Finally, note that in order to keep a light-weight package, we store 
large data files in Synapse. DREAMTools will download files auto-
matically on request. The download is achieved using the Python 
Synapse client (also available for the R language).

Available challenges and scoring metrics
DREAMTools covers about 80% of the past DREAM challenges, 
as shown in Table 1. Although there is a wide range of biological 
problems addressed in the DREAM challenges, most of the scoring 
functions revolve around a set of established methods. A majority 
of the challenges are posed as binary classification questions. Here, 
scoring metrics compare the predictions against a gold standard and 
derive metrics such as the AUROC (area under the receiver operating 
characteristic) or AUPR (area under the precision/recall curve). The 
rest of the challenges are posed as prediction of quantitative values, 
and use scoring metrics that compare the predicted values and gold 
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standard by computing their correlation, either between the actual 
values using e.g. Pearson correlation, or between their ranks, using 
either Spearman’s rank correlation or concordance index (CI).

Some final scores are based on the empirical null distribution of 
random sets of predictions so that the final scores are p-values. In 
addition, while scoring metrics such as Spearman’s rank correlation 
provide an absolute value that can be compared to the leaderboard, 
in some cases the rank of the prediction when compared to the other 
participants is also involved in the scoring. In such cases, even if 
the scores reported in DREAMTools use the same scoring func-
tions as those used while the challenge was open, the score reported 
by DREAMTools may be different from what can be found in the 
published leaderboard.

In this section we provide a short description of each challenge and 
the scoring metric(s) used. Details about the methods can be found 
in the Supplementary material (see Section 1). Full details about the 
data format and scoring metrics for each of those challenges can be 
found on the dedicated Synapse project, whose identifiers are pro-
vided in Table 1. We will use the following conventions whenever 
possible: the final score (if unique) is denoted S. A rank is denoted R. 
A p-value is denoted p with a label (e.g., p-value of the AUROC 
metric is denoted p

AUROC
). The gold standard data set is denoted X 

and a prediction from a participant is denoted X̂ .

DREAM2
DREAM2 conducted 5 challenges16. The scoring functions are 
all based on the AUROC and AUPR metrics (see Supplementary 
material for details).

D2C1: BCL6 Transcriptional Target Prediction
	 Description: BCL6 is a transcription factor that plays a 

key role in both normal and pathological B cell physiology. 
The intersection of two independent data sets of transcrip-
tional targets of BCL6 (based on (i) ChIP-on-ChIP data and 
(ii) molecular perturbations) provided 53 functional BCL6 
gene targets. In this challenge a set of 147 decoy genes were 
randomly selected (with no evidence of being BCL6 tar-
gets) and combined with the 53 functional BCL6 genes to a 
list of 200 genes in total. The challenge consisted of identi-
fying which genes are the true targets (and the decoys); to 
do so, participants were given an independent panel of gene 
expression data17.

	 Scoring metric: Using a binary classifier, the AUPR and 
AUROC   metrics are computed.

D2C2: Protein-Protein Interaction Network Inference
	 Description: The challenge consisted of determining the set 

of true positive and true negative protein-protein interactions 
among all the pairwise interactions possible within a network 
of 47 proteins (yeast)16.

	 Scoring metric: The list of gene pairs are ordered according 
to the confidence. Using a binary classifier and a gold standard 
of gene pairs, the AUPR and AUROC metrics are computed.

D2C3: Synthetic Five-Gene Network Inference
	 Description: In this challenge, a 5-gene synthetic-biology 

network was created and transfected to an in vivo model 
organism. Participants were asked to predict the connectivity 
of this network using in vivo measurements. Two slightly dif-
ferent networks were built using quantitative PCR or Affyme-
trix chips. Each version had 6 variants depending on the 
nature of the networks (e.g., signed vs unsigned networks).

	 Scoring metric: Each submitted network is scored independ-
ently using the AUPR and AUROC metrics.

D2C4: In Silico Network Inference
	 Description: Three in silico networks were created and 

endowed with deterministic dynamics that simulate biological 
interactions. The challenge consisted in reverse engineer-
ing those networks. The first and second networks had about 
50 nodes and 100 directed edges with Erdos-Renyi and scale-
free topology, respectively. The third network was a full 
in-silico biochemical network with 23 proteins, 24 metabo-
lites and 20 genes through 146 directed edges16. Each net-
work had 5 variants depending on the nature of the networks 
(e.g., signed vs unsigned networks).

	 Scoring metric: Same as D2C3.

D2C5: Genome-Scale Network Inference
	 Description: A panel of normalized E. coli Affymetrix 

microarrays were provided. The challenge consisted of 
reconstructing a genome-scale transcriptional network of 
3456 genes and 320 transcription factors18.

	 Scoring metric: Same as D2C3.

DREAM3
DREAM3 had 5 challenges fully described in 3.

D3C1: Signaling Cascade Identification
	 Description: Protein concentrations of four intracellular pro-

teins involved in a signaling cascade were measured in single 
cells by antibody staining and flow cytometry. The task was to 
identify each of the measured proteins from among the seven 
molecular species: complex, kinase, phosphorylated complex, 
phosphorylated protein, protein, phosphatase, and activated 
phosphatase)3.

	 Scoring metric: The number of correctly assigned protein 
identities. Final score is the probability of having k or more 
correct predictions as compared to a random assignment.

Page 8 of 29

F1000Research 2016, 4:1030 Last updated: 24 JUN 2020



D3C2: Signaling Response Prediction
	 Description: The goal of this challenge was to predict the 

response to perturbations of a signaling pathway in normal 
and cancer human hepatocytes. There were 2 sub-challenges: 
(i) prediction of a subset of phosphoproteomic data points 
measured but removed from normal and cancer hepatocytes 
data sets (ii) prediction of the concentration of the 20 cytokines 
measured but removed from the training data sets3,4.

	 Scoring metric: The distance between the prediction and 
gold standard is computed as the normalized squared error E:
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with i a time index, σ
b
 = 0.1 represents a baseline, signal 

independent, measurement noise and σ
s
 = 0.2 represents a 

signal dependent measurement noise. Finally, a probability 
distribution for this metric was estimated by simulation of a 
null model and a p-value reported as the final score.

D3C3: Gene Expression Prediction
	 Description: Gene expression time course data were provided 

for four different strains of yeast (S. cerevisiae): one wild type 
and three mutants11. Participants were asked to predict the 
relative expression levels for 50 genes (not part of the train-
ing data set) at eight time points in one mutant. For each time 
point, predictions were submitted as a ranked list (with values 
from 1 to 50 sorted from most induced to most repressed 
compared to the wild type expression).

	 Scoring metric: Submissions are scored using Spearman’s 
rank correlation coefficient between the predicted and meas-
ured gene expression at each of the eight time points. The same 
statistic is also computed with respect to each gene across all 
time points. Thus, two tests of similarity to the gold standard 
are computed (time-profiles T and gene-profiles G). P-values 
are computed using a test for association between paired 
samples. The final score is:

	
( )10

1
log ,

2 T GS p p= − ×
     

(2)

where p
T
 and p

G
 are the p-value for the time-profiles and gene-

profiles, respectively.

D3C4: In Silico Network Challenge
	 Description: The goal of this challenge was to reverse 

engineer a gene network from time series and steady state 
data. Participants were asked to predict the directed unsigned 
network topology from the given in silico generated gene 
expression data sets3. There were 3 sub-challenges with differ-
ent network sizes (10, 50 and 100) for 5 different data sets.

	 Scoring metric: For a given sub-challenge, predictions are 
required to be ranked edge-list. The 5 data set predictions are 
assessed based on the AUPR and AUROC and their respective 

p-values. Intermediate scores are computed using the log-
transformed average of the p-values:
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The final score is the mean of those 2 scores.

DREAM4
D4C1: Peptide Recognition Domain (PRD) Specificity 
Prediction

	 Description: Peptide Recognition Domain (PRD) binds short 
linear sequence motifs in other proteins. Many protein-protein 
interactions are mediated by PRD. For example, PDZ domains 
recognize hydrophobic C-terminal tails, SH3 domains recog-
nize proline-rich motifs, and kinases recognize short sequence 
regions around a phosphorylatable residue19. This challenge 
consisted of predicting a position weight matrix (PWM) that 
describes the specificity profile of each of the domains to their 
target peptides.

	 Scoring metric: PWM predictions are judged exclusively by 
similarity to the experimentally mapped PWM using the dis-
tance induced by the Frobenius norm, defined as the square 
root of the sum of the absolute squares of its elements:
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In the kinase case, distances for N = 3 PWMs are computed 
using the Frobenius distance. The p-values of those distances 
are computed based on random PWMs (a random PWM is 
formed by entries with values identically and uniformly dis-
tributed such that each column normalizes to one). Final score 
is then the log-transformed average of these p-values:
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Similarly for the PDZ and SH3 sub-challenges with N = 4 and 
N = 3, respectively.

D4C2: DREAM4 In Silico Network Challenge
Description: Similarly to D3C4, the goal of the challenge was 
to reverse engineer gene regulation networks from simulated 
steady-state and time-series data. Participants were asked to infer 
the network structure from in silico gene expression data sets20.

	 Scoring metric: See D3C4 challenge scoring metric.
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D4C3: Predictive Signaling Network Modeling
	 Description: Participants were asked to create a cell-type spe-

cific model of signal transduction using the measured activity 
levels of signaling proteins in HepG2 cell lines3.

	 Scoring metric: The score is the sum of squared errors over 
all the predictions (see Equation 1) for each protein. Then, 
p-values are computed and the prediction score is defined as 

71
log

N
pred ii

S p
N

=
= − ∑ with p

i
 the p-value for a given protein. 

The final score being:

		  eNpredS S r= − ×
   

(7)

with r a weight per edge computed as the minimum over all 
participants of the prediction score divided by edge count and 
N

e
 the number of edge in the network (asked on the prompt). 

The parameter r is used to take into account the parsimony of 
the submitted network.

DREAM5
D5C1: Epitope-Antibody Recognition (EAR) Specificity 
Prediction
	 Description: Antibody-protein interactions play a critical role 

in medicinal disciplines (e.g., oncology). Ideally, one specific 
antibody exclusively binds one specific sequence, however, 
many antibodies bind to a set of related peptides (or even 
distinct) and do so with different affinities. A key question is 
to be able to predict common peptide/epitope sequences that 
can be recognized by human antibodies. In this challenge, 
a pool of about 7000 epitope sequences containing peptide 
sequences reactive with human immunoglobulins was experi-
mentally identified21 to constitute the positive set. Conversely, 
about 20,000 peptides showed no antibody binding activity 
and constituted the negative set. Given a training set, the chal-
lenge consisted in determining whether each peptide in the 
test set belongs to the positive or negative set.

	 Scoring metric: The AUROC and AUPR metrics are computed. 
Their p-values are obtained from null distributions. The 
overall score is:

	
( ) ( )( )10 10

1
log log .

2 AUROC AUPRS p p= − + (8)

D5C2: TF-DNA motif Recognition Challenge
	 Description: Transcription factors (TFs) control the expres-

sion of genes through sequence-specific interactions with 
genomic DNA. Modeling the sequence specificities of TFs is 
a central problem in understanding the function and evolution 
of the genome. In this challenge, binding preferences of 86 
mouse TFs were provided in the form of double-stranded DNA 
probe intensity signals from protein binding microarrays22. 
A training data set of 20 TFs was provided and the challenge 
consisted of predicting the signal intensities for the remaining 
TFs6. Note that DREAMTools also include a plotting function-
ality with this challenge (see Figure 2).

	 Scoring metric: Spearman and Pearson correlations as well 
as AUROC and AUPR metrics are used, however, the Pearson 
correlation is used for the final ranking.

D5C3: Systems Genetics challenges
	 Description: In this challenge, participants were asked to 

predict disease phenotypes and infer gene networks from 
Systems Genetics data. A first sub-challenge (SysGenA) 
made of simulated data considered 3 independent network 
sizes (100, 300 are 999), with 5 networks for each size. A 
second sub-challenge (SysGenB) provided training sets 
including phenotype, genotype, and gene expression data. 
Predictions of two phenotypes were required for 3 independ-
ent cases based on (1) only genotype data, (2) only gene 
expression data, and (3) both genotype and gene expression 
data23.

	 Scoring metric: In the SysGenA sub-challenge, the final 
score is a function of AUPR and AUROC metrics (see D3C4 
for details). In SysGenB, two phenotypes are scored using 
Spearman’s rank correlation. Their p-values are computed and 
the final score is then:

	
( )pheno1 pheno2log log .BS p p= − +

 
(9)

D5C4: Network Inference Challenge
	 Description: The goal of this challenge was to reverse 

engineer gene regulatory networks from gene expression 
data sets in E. coli, S. cerevisiae, S. aureus, and an in silico 
compendium. Each compendium is made of an expression 
matrix of g genes by c chip measurements. A set of decoy 
genes (about 5% of the compendium) were introduced by ran-
domly selecting gene expression values from the compendium 
itself. The software GeneNetWeaver24 was used to create the 
gene expression profiles for the in silico network.

	 Scoring metric: The final score is a function of AUPR and 
AUROC metrics (see D3C4 for details).

DREAM6
D6C1: Alternative Splicing
	 Description: RNA-splicing is the process of combining dif-

ferent exons of one gene towards the production of mature 
mRNA transcripts. Alternative splicing consists of assem-
bling different combinations of exons; it plays an important 
role in transcriptome diversity including mammals. Shuf-
fling of exons makes it possible for the same gene to code 
for different proteins. Besides, correct splicing is impor-
tant for cells to function correctly. The challenge con-
sisted of using short read RNA-seq data from Mandrill and 
Rhinoceros fibroblasts (about 100 nucleotides) so as to 
predict as many transcript isoforms as possible (generated 
by alternative splicing). The gold standard was created using 
selected target transcripts with read lengths between 1Kb and 
2Kb nucleotides.
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	 Scoring metric: Predictions are evaluated using the AUPR 
curve using a global alignment strategy: (1) precision at 
depth i in the prediction list was obtained by dividing by i 
the number of predicted transcripts in the first i predictions 
to which at least a gold standard transcript could be matched 
with a coverage and an identity of 95% or more. (2) Recall 
at depth i in the predicted list is calculated by dividing the 
number of gold standard transcripts that could be matched to 
the first i predicted transcripts with a coverage and an iden-
tity of 95% by the total number of transcripts in the gold 
standard.

The AUPR values are computed for hESC (human embryonic 
stem cells) and Rhino IPSC (induced pluri-potent stem cells). 
The final score is the sum of the two AUPRs.

D6C2: Parameter Estimation
This challenge was about the inference of the kinetic parameters of 
three gene regulatory networks using iterative optimization and a 
virtual experimental design25. The challenge was proposed again in 
DREAM7 (see D7C2 section for details).

D6C3: Expression Prediction
	 Description: The level by which genes are transcribed is 

largely determined by the DNA sequence upstream to the 
gene, known as the promoter region. The challenge consisted 
of predicting the promoter activity derived by a ribosomal 
protein (RP) promoter sequence. Participants were given a 
training set (90 RP promoters) for which both the promoter 
sequence and their activities are known and a test set (53 pro-
moters) for which only the promoter sequence is known. The 
goal was to predict the promoter activity of the promoters in 
the test set26.

	 Scoring metric: Four metrics are used26: two distances 
between measured and predicted values and two differences 
in rank between measured and predicted values. The distances 
are based on a Pearson metric and a chi-square metric. The 
rank differences are based on the Spearman’s rank correla-
tion and rank-square metric. Those 4 metrics have p-values 
denoted p

j
 with j = 1..4 derived from null distributions based 

on participants’ submissions. The overall score is then:
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D6C4: FlowCAP2 Molecular Classification of Acute Myeloid 
Leukaemia Challenge
	 Description: Flow cytometry (FCM) has been widely used by 

immunologists and cancer biologists in the last decades as a 
biomedical research tool to distinguish different cell types in 
mixed populations, based on the expression of cellular mark-
ers. The goal of this challenge was to diagnose Acute Myeloid 

Leukaemia (AML) from patient samples using FCM data. In 
particular, participants were asked to find homogeneous clus-
ters of cells, which can be used to discriminate between AML 
positive patients and healthy donors1.

	 Scoring metric: Four metrics are used: AUPR, Matthews 
correlation coefficient (see Supplementary material), Jaccard 
similarity coefficient (size of the intersection divided by the 
size of the union of two sample sets), and Pearson correla-
tion. The final score is the average of those four metrics and 
ranking amongst top performers is based on the Pearson 
correlation.

DREAM7
D7C1: Parameter Estimation
	 Description: Accurate estimation of parameters of bio-

chemical models is required to characterize the dynamics of 
molecular processes. Consequently, effective experimental 
strategies for parameter identification and for distinguishing 
among alternative network topologies are essential. In this 
challenge, we created an in silico test framework under which 
participants could probe a network with hidden parameters. In 
addition, a virtual budget was provided to participants to buy 
experimental data (generated in silico with the model) mim-
icking the features of different common experimental tech-
niques (e.g., microarrays and fluorescence microscopy). In a 
first sub-challenge, the topology and underlying biochemical 
structure of a 9-gene regulatory network was provided. Partici-
pants were asked to (i) estimate the 18 parameters of the model 
and (ii) predict outcomes of perturbations (time courses). The 
second sub-challenge provided an 11-gene regulatory network 
with 3 missing regulatory links to be guessed25.

	 Scoring metric: For the first sub-challenge, two distances are 
computed. First, a distance D

param
 that is the mean of the mis-

match between estimated and true parameters on a log-scale:
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with the number of parameters N
p
 = 45. Second, a distance 

D
time course

 that is similar to Equation 1 (square errors):
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where k is a time course index, i a time index and the param-
eters σ

b
 and σ

s
 are set to 0.1 and 0.2, respectively (see 

D3C2 challenge for details). Since the initial time point 
was provided, the first 10 data points are ignored. From the 
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participants’ submission a null distribution and p-values are 
computed and the final score is:

( )param time course1 .S log p p= − × (13)

In the network topology sub-challenge, an ad-hoc distance 
based on the link and nature of the 3 missing regulations is 
used25. Again, from the participant’s submission a null distri-
bution and p-value is computed. The final score is then:

( )topology2 .S log p= − (14)

D7C2: Breast Cancer Prognosis
Description: In the breast cancer prognosis challenge, the 
goal was to assess the accuracy of computational models 
designed to predict breast cancer survival. Participants were 
asked to build computational models based on clinical infor-
mation about the patient’s tumor. In addition, genome-wide 
molecular profiling data including gene expression and copy 
number profiles were provided9.

	 Scoring metric: Models were scored by calculating the exact 
concordance index between the predicted survival and the true 
survival information in the validation data set (accounting for 
the censor variable indicating whether the patient was alive at 
last follow-up). See Supplementary material for details.

D7C3: The DREAM Phil Bowen ALS Prediction Prize4Life
Description: ALS is a fatal neurodegenerative disease. One 
important obstacle to understanding and developing an effec-
tive treatment for ALS is the heterogeneity of the disease 
course, ranging from under a year to over 10 years. The more 
heterogeneous the disease, the more difficult it is to predict 
how a given patient’s disease will progress. ALS status is 
defined by a functional scale called ALS Functional Rating 
Scale (ALSFRS). ALS progression between two time points 
can be defined as the slope between two ALSFRS values. 
The goal of the challenge was to predict the future progres-
sion of disease in ALS patients based on the patient’s current 
disease status and data (e.g., family history data, vital signs, 
lab data...)8.

Scoring metric: Two ALSFRS values are available for each 
patient, providing the actual slope X across patients. The 
accuracy of predicted slopes X̂  from participants is assessed 
using the root mean square error.

D7C4: NCI-DREAM Drug Sensitivity and Synergy Prediction
Description: The connection between molecular measure-
ments and cellular drug response is central to precision medi-
cine. Two sub-challenges were run to evaluate methods that 
leveraged -omics measurements to predict drug response 

in human cell lines. The first sub-challenge was to predict 
drug sensitivity in breast cancer cell lines by integrating 
multiple –omics data types27. The second sub-challenge was 
to predict drug synergy/antagonism in a B cell lymphoma cell 
using gene expression and copy number alterations28.

Scoring metric: In sub-challenge 1, teams were asked to 
predict the rank order of cell lines treated with 28 drugs. 
An aggregate scoring method was developed that we called 
the weighted, probabilistic concordance-index (wpc-index), 
a variant of the concordance index (see Section 1.2.5 for 
details). Indeed, drug measurements vary across experi-
ments and gold standard ranked list of cell lines by drugs 
is subject to noise. The pooled variance was calculated and 
taken into account when scoring and the final wpc-index 
was the weighted average over all drugs. Statistical signifi-
cance was calculated by comparing a team’s wpc-index to 
the empirical null distribution of random sets of predictions. 
False Discovery Rates (FDRs) were calculated to account 
for the multiple testing hypotheses given by the number of 
teams that submitted predictions to the challenge. Teams were 
also scored according to a resampled Spearman correlation. 
Full details of the scoring methodology can be found in the 
Supplementary Note 3 in Costello, et al.27.

In sub-challenge 2, teams were asked to predict the rank order 
of drug combinations for 14 drugs from the most synergistic to 
most antagonistic. For each drug combination, drug response 
was measured on the Ly3 cell line and Excess over Bliss (EoB) 
was calculated as the average over five replicates e

i
 with the 

corresponding standard deviation s
i
. The definition of Bliss 

additivisim (or Bliss independence) can be found in Borisy 
et al.29. Similar to sub-challenge 1, the scoring method was 
a modification of the concordance index, taking into account 
the probabilistic nature of the EoB calculations. A leave-
one-out approach (leave-one-drug-out) was used for p-value 
estimation and FDR correction was applied. Additionally, the 
resampled Spearman scoring approach was used as a second 
scoring method. Full details of the scoring methodology can 
be found in Supplementary Note 1 in Bansal et al.28.

DREAM8
D8C1: HPN-DREAM Breast Cancer Network Inference

Description: This challenge aimed to advance and assess our 
ability to infer causal protein signaling networks and predict 
protein time-courses in a complex, mammalian setting. 
Participants were provided with protein time-course data 
from four breast cancer cell lines under various ligand stimuli 
and inhibitor perturbations. The challenge consisted of three 
sub-challenges. Sub-challenge 1 tasked teams with inferring 
causal signaling networks specific to each of 32 contexts 
defined by combination of cell line and stimulus. In contrast 
to networks that simply describe correlations between nodes, 
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a directed edge in a causal network predicts that an interven-
tion on the parent node will lead to a change in abundance 
of the child node. For sub-challenge 2, teams were asked to 
predict context-specific phosphoprotein time-courses under 
an unseen inhibitor perturbation. Sub-challenges 1 and 2 also 
consisted of companion tasks based on in silico data. Sub-
challenge 3 (not part of DREAMTools) asked teams to devise 
novel ways to visualize these data. A full description of the 
challenge can be found in 10.

Scoring metric: For sub-challenge 1, since there were no 
gold standard causal networks for the experimental data task, 
a scoring procedure was developed that used held-out inter-
ventional test data to assess the causal validity of submitted 
networks. In brief (for full details see 10), the held-out test 
data consisted of time-courses for the same 32 contexts, but 
obtained under an inhibitor not contained in the training data 
(an mTOR inhibitor). The test data were used to identify, for 
each context, proteins that show salient changes in abundance 
under mTOR inhibition (relative to baseline). This provides a 
’gold standard’ set of descendants of mTOR for each context 
and these were compared against descendants of mTOR in 
submitted networks, resulting in 32 AUROC scores for each 
team. Teams were ranked within each context and the final 
score was the mean rank across the 32 contexts. For the in silico 
data task, the gold standard (data-generating) causal network 
was known and could be directly compared against submis-
sions to calculate AUROC scores. For sub-challenge 2 experi-
mental data task, team predictions of protein time-courses under 
mTOR inhibition were directly compared against the held-
out test data (also obtained under mTOR inhibition). Perfor-
mance was assessed using root mean squared error (RMSE). 
Teams were ranked by RMSE within each (cell line, phospho-
protein) pair and the final score was the mean rank across all 
pairs. A similar procedure was used for the in silico data task.

D8C2: NIEHS-NCATS-UNC DREAM Toxicogenetics 
Challenge

Description: The challenge was designed to investigate the 
predictability of cytotoxicity in a population in response 
to environmental compounds and drugs. In vitro cytotox-
icity screening was performed for 884 lymphoblastoid cell 
lines perturbed with 156 compounds. Genotype and tran-
scriptional data for the cell lines were available as part of the 
1000 Genomes Project (www.1000genomes.org) and structural 
attributes for the compounds were also provided. Participants 
were provided with training data consisting of the cytotoxic 
response for 620 cell lines and 106 compounds. Two sub- 
challenges were proposed: (1) prediction of individual cytotox-
icity for 264 new individuals in response to the 106 compounds 
of the training set and (2) prediction at a population-level 
cytotoxicity (median and interquantile range) for 50 new 
compounds. Full description of the challenge is available in 7.

Scoring metric: Sub-challenge 1: for each submission, 
Pearson correlation and probabilistic concordance index 

(wpc) are computed for each of the 106 compounds in the 
test set across the 264 individuals. For each metric, teams are 
ranked separately for each compound and an average rank 
is then computed across compounds. The final rank is the 
average of the two intermediate ranks.

Sub-challenge 2: for each submission, Pearson correlation and 
Spearman correlation are computed for the predicted median 
cytotoxicity and interquantile range across the 50 compounds 
in the test set. Submissions are ranked separately for each 
population parameter (i.e. median and interquantile range) 
and then the final rank is the average of the two intermediate 
ranks.

D8C3: Whole-Cell Model Parameter Estimation Challenge
Description: Participants were challenged to estimate the 
parameters of a modified whole-cell model of a slow-growing 
mutant strain of the bacterium Mycoplasma genitalium30. 
Participants were given eight types of simulated data 
generated using the mutant strain. Participants were also given 
credits to purchase additional perturbation data generated 
by modifying the values of individual parameters of the mutant 
strain. Full description of the challenge is available in 31.

Scoring metric: As in the D7C1 challenge (See D7C1 
section), submissions were scored based on a combination of 
their parameter and prediction distances (Equation 13). The 
parameter distance was computed as the average log ratio of 
the estimated and true parameter values (Equation 11). The 
prediction distance was computed as the average Euclidean 
distance between the estimated and true in silico phenotypes, 
scaled by their variances. This scoring function is not included 
in DREAMTools. This scoring function is implemented in 
MATLAB, and is available open-source at GitHub (https://
github.com/CovertLab/wholecell). A complete working 
example of this scoring function, including the gold standard, 
is available at Synapse (https://www.synapse.org/#!Synapse:
syn1876068/wiki/232963).

DREAM8.5
D8dot5C1: Rheumatoid Arthritis Responder

Description: The goal of this challenge was to use a 
crowd-based competition framework to develop a validated 
molecular predictor of anti-TNF response in Rheumatoid 
Arthritis (RA). We used the whole genome SNP data derived 
from two cohorts: 2,706 anti-TNF treated RA patients com-
bined across 13 collections of European ancestry32, and 591 
patients in the CORRONA CERTAIN study33. Treatment 
efficacy was measured using the absolute change in disease 
activity score in 28 joints34 (DAS28) following 3–6 months 
of anti-TNF treatment. The challenge was devised into two 
components. Sub-challenge 1: predict treatment response as 
measured by the change in disease activity score (DAS28) in 
response to anti-TNF therapy. Sub-Challenge 2: identify poor 
responders as defined by EULAR35 criteria for non-response 
(20% of the study population).
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Scoring metric: In sub-challenge 1, each participant submis-
sion is scored independently using the Spearman correlation. 
In sub-challenge 2, each submission is scored independently 
using the AUPR and AUROC metrics (same as D2C3).

DREAM9
D9C1: The Broad-DREAM Gene Essentiality Prediction 
Challenge

Description: Essential genes are those genes of an organ-
ism that are thought to be critical for its survival. In this 
challenge, participants were given a set of training gene 
dependency/essentiality scores from a set of cancer cell lines 
with expression data, copy number data, and mutation data. 
The goal was to develop predictive models that can infer gene 
dependencies/essentialities using the provided molecular 
features. Three sub-challenges included (i) building a model 
that predicts all gene essentiality scores in a held-out test set, 
using any feature data, (ii) predicting a subset of gene essenti-
ality scores using only N = 10 gene expression, copy number, 
or mutation features per gene and (iii) same as sub-challenge 
2 with N = 100. For sub-challenges 2 and 3, a smaller list of 
prioritised 2647 genes was selected considering profiles of 
the gene essentiality data, cancer related genes and evidence 
of the gene to be a potential drug target.

Scoring metric: For all sub-challenges, prediction perform-
ances are assessed in terms of Spearman’s rank correlation 
coefficient. We first calculate the Spearman’s rank correlation 
coefficient for each gene between the measured and predicted 
gene-level scores over held-out cell lines. For each submis-
sion, the overall score is calculated as the average correlation 
over all genes (all genes for sub-challenge 1 and all prioritized 
genes for sub-challenges 2 and 3).

D9C2: AML Outcome Prediction
Description: AML is a cancer of the bone marrow and the 
blood. Mutations in the myeloid line of blood stem cells lead 
to the formation of aberrant myeloid blasts and white blood 
cells. If untreated, these highly proliferative cancerous cells 
impede the development of normal blood cells and eventually 
cause death. In this challenge, participants had to predict the 
outcome of treatment of AML patients (resistant or remission) 
as well as their remission duration and overall survival based 
on clinical cytogenetics, known genetics markers and phospho-
proteomic data. Three sub-challenges were conducted. In the 
first, participants were asked to predict which AML patients 
will have complete remission or will be primary resistant. In 
sub-challenge 2, participants were asked to predict remission 
duration for patients who have completeremission.

Scoring metric: In sub-challenge 1, the scoring methods 
are the AUROC and balanced accuracy (BAC), defined in 
Section 1.1. In sub-challenge 2 and 3, the scoring methods 
are the concordance index (CI) and Pearson correlation coeffi-
cient (see Section 1.2.5). The Pearson correlation coefficient is 

used to measure correlation between predictions of remission 
duration and actual remission duration. In those sub-challenges, 
the final rank is the average of the two intermediate ranks.

D9C3: Alzheimer’s Disease Big Data
Description: The goal of the Alzheimer’s Disease (AD) 
challenge was to identify accurate predictive biomarkers 
that can be used to improve AD diagnosis and treatment. 
In order to build predictive models, participants were given 
genetics and brain imaging data in combination with cogni-
tive assessments, biomarkers and demographic information 
from cohorts ranging from Cognitively Normal (CN) to Mild 
Cognitively Impaired (MCI) to individuals with Alzheimer’s 
Disease (AD). An essential metric for diagnosis is the Mini-
mental state examination (MMSE) score at baseline and at 
the 24 month follow-up visit. Three sub-challenges were con-
ducted to (i) predict the change in cognitive scores 24 months 
after initial assessment (ii) predict the set of cognitively nor-
mal individuals whose biomarkers are suggestive of amy-
loid perturbation and (iii) classify individuals into diagnosis 
groups using MR imaging.

Scoring metric: In the first sub-challenge, participants were 
asked to predict the change in cognitive scores using (i) clini-
cal covariate only or (ii) clinical covariate and additional 
genetics variables. Those two predictions are scored using 
Pearson and Spearman correlations leading to 4 ranks across 
submissions, which are average to provide the final rank.

In the second sub-challenge, the problem was to understand 
how some people maintain normal cognitive function in the 
presence of amyloid pathology. The set of cognitively normal 
individuals predicted by participants includes the ranking of 
these subjects (from the most discordant to the least discord-
ant), the confidence in the ranking, and if the subject is dis-
cordant or concordant. The final score is the average of the 
AUROC and BAC values.

In the third sub-challenge, participants were asked to clas-
sify individuals to differentiate AD patients from others using 
MR imaging using the MMSE as a confidence score. Two 
scores are computed to rank the submissions based on (1) the 
Pearson correlation of the predicted MMSE with the meas-
ured MMSE scores and (2) the concordance correlation 
coefficient (CCC) (see Section 1.2.4) for agreement on a 
continuous measure between observed and predicted MMSE. 
Again, final ranking is the average of these two ranks. Note 
that the percentage of correctly classified subjects in each of 
the three diagnostic classes is used to resolve ties.

D9C4: ICGC-TCGA-DREAM Somatic Mutation Calling 
Challenge

Description: The detection of somatic mutations from cancer 
genome sequences is key to understanding the genetic basis of 
disease progression, patient survival and response to therapy. 
The goal of the somatic mutation calling (SMC) challenge is 

Page 14 of 29

F1000Research 2016, 4:1030 Last updated: 24 JUN 2020

https://www.synapse.org/#!Synapse:syn2511678


to identify the most accurate mutation detection algorithms 
using as input whole-genome sequencing (WGS) data from 
tumor (prostate and pancreatic) and normal samples36.

There were two sub-challenges called Intel-10 SNV and  
ITM1-10 SV. Single nucleotide variants (SNVs) are altera-
tions of a single base within the DNA code, and often cause 
sensitivity to specific drugs. A typical cancer may contain tens 
of thousands of SNVs. Structural variations (SVs) are dupli-
cations, deletions or rearrangements of large segments of the 
genome and are often described as being the primary cause 
of cancer.

Scoring metric: Genomic variant detectors are classifiers. 
The performance of the predictive algorithms from the par-
ticipating challenge teams are ranked using the validation data 
to compute the sensitivity, specificity and balanced accuracy.

DREAM9.5
D9dot5C1: DREAM Olfaction Prediction Challenge

Description: The goal of this challenge was to predict how 
a molecule smells from its physical and chemical features. 
We provided a large unpublished data set based on extensive 
smell-testing of 49 human subjects asked to sniff 476 different 
odor chemicals. Subjects were asked to tell us how pleasant 
the odor is, how strong the odor is, and how well the smell 
percept matches a list of 19 descriptors. To complement these 
perceptual data, we provided physical-chemical information 
about each odor molecule. Two sub-challenges were pro-
posed. In the first, participants had to predict individual odor 
intensity, odor valence (pleasantness/unpleasantness) and the 
matrix of 19 odor descriptors (at high intensity) for each of 
the 49 subjects. In the second sub-challenge, the mean and 
standard deviation of the odor intensity, odor valence (pleas-
antness) and matrix of 19 odor descriptors (at high intensity) 
were requested.

Scoring metric: Out of the 476 odor chemicals, 338 were 
provided as a training set and 69 were used as a test set for the 
final scoring. In sub-challenge 1, the Pearson correlation 
across the 69 odors for intensity (int) and pleasantness/valence 
(ple) are computed and denoted r

int
 and r

ple
, respectively. The 

mean for all 49 individuals is computed and denoted r̄ 
int

 and r̄ 
ple

. 
Similarly, for the descriptors, the Pearson coefficient for each 
of the 69 odor is averaged across the individuals and descrip-
tors and denoted r̄ 

dec
. The z-scores are calculated by subtracting 

the average Pearson correlations and scaling by the standard 
deviation of a distribution based on a randomization of the 
gold standard. The final score is the average of the z-scores.

For sub-challenge 2: Instead of using the mean (across 49 
individuals) of the Pearson correlation (across the 69 odors), 
the Pearson correlation of the mean intensity and standard 
deviation (across 49 individuals) was used. This leads to 
6 values (2 for intensity, 2 for valence and 2 for descriptors). 

Again, z-scores are calculated from an empirical null distribu-
tions and the final score is the average of the z-scores.

D9dot5C2: Prostate Cancer DREAM Challenge
Description: This challenge focused on predicting survival 
using patients’ clinical variables with the goal to improve 
prognostic models and toxicity of docetaxel treatment in 
patients with metastatic castrate resistant prostate cancer 
(mCRPC). Over 100 clinical variables were summarized 
across four phase III clinical trials with over 2,000 mCRPC 
patients treated with first-line docetaxel. There were two sub-
challenges. Sub-challenge 1a was to predict overall patient 
survival and sub-challenge 1b was to predict the exact time 
to event for each patient. Sub-challenge 2 was to predict if 
a patient will be discontinued from docetaxel treatment 
because of adverse events. The primary benefit of this Chal-
lenge will be to establish new quantitative benchmarks for 
prognostic modeling in mCRPC, with a potential impact for 
clinical decision making and ultimately understanding the 
mechanism of disease progression.

Scoring metric: Participants were asked to produce “risk 
scores” for each patient for sub-challenge 1a and the exact 
time to death for sub-challenge 1b. There were two met-
rics used to score participants for sub-challenge 1a, namely 
the integrated AUC (iAUC) as defined in the timeROC 
package in R and the concordance index (see Section 1.2.5). 
Sub-challenge 1b was scored using the root mean squared 
error (RMSE).

For sub-challenge 2, participants were asked to supply a “risk 
score” and a discrete variable equal to 1 if the patient is pre-
dicted to discontinue within 3 months and 0 otherwise. Sub-
missions were scored using the AUPR metric as defined in the 
ROCR package in R.

DREAM10
D10C1: ALS Stratification Prize4Life

Description: This challenge is a follow-up on to the DREAM 
7 ALS Prize 4 Life Challenge (see D7C3 for details). It focuses 
on predicting the progression and survival of ALS patients. 
One objective of the challenge is to leverage the PRO-ACT 
database of more than 8,000 cases as the challenge training 
set. The challenge will include several unpublished data sets 
to be used for model validation.

Scoring metric: This is an on-going challenge. The scoring-
metric has not been released yet (September 2015).

D10C2: ICGC-TCGA DREAM Somatic Mutation Call-
ing Tumor Heterogeneity (SMC-Het)
Description: This challenge is a follow-up on to D9C4 chal-
lenge (somatic mutation calling). This challenge’s focus is 
to identify the best subclonal reconstruction algorithms and 
to identify the conditions that affect their performance. See 
Section D9C4 for details.
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	 Scoring metric: This is an on-going challenge. The scoring 
metric has not been released yet (September 2015).

D10C3: ICGC-TCGA DREAM Somatic Mutation Calling 
RNA (SMC-RNA)
	 Description: This challenge is a follow-up on to D9C4 

challenge (somatic mutation calling). See Section D9C4 for 
details.

	 Scoring metric: This is an on-going challenge. The scoring 
metric has not been released yet (September 2015).

Conclusions
The organization of a collaborative competition such as the DREAM 
challenges is a complex task that starts by identifying a currently 
important and unresolved scientific problem, acquiring relevant 
data sets, engaging a community of participants, and implementing 
an appropriate scoring methodology. Participants can submit their 
solutions (e.g., predictive models or predictions) which are then 
scored and ranked, and the results are shown on a public leader-
board. Once the challenge is closed, those leaderboards can be used 
as a benchmark for further development of methods. To promote sci-
entific reproducibility as well as post-challenge use, DREAM pro-
vides via Sage Bionetwork’s Synapse platform the resources to help 
researchers access data and leaderboards of previous challenges.

In this paper, we presented DREAMTools to provide a uniform 
framework where researchers can easily assess and compare new 
methods against benchmarks. DREAMTools gathers most of the 
scoring functions used in previous DREAM challenges. DREAM-
Tools uses Python as a glue language known for its flexibility and 
ability to call other languages. Currently, about 80% of the closed 
challenges are available. The remaining challenges are either in the 
process of being included or hosted on external websites. Future 
versions of DREAMTools will aim at making available as many 
closed challenges as possible including newly closed challenges.

DREAMTools will help researchers who wish to test their algo-
rithms against existing benchmarks. Indeed, templates can be 
downloaded and used to create predictions, which can then be 
tested. The gold standards are also available together with the rel-
evant scoring functions. Since DREAMTools makes use of an object 
oriented approach, it will ease the integration of future challenges 
thereby facilitating scoring in upcoming challenges. DREAMTools 
can also be used as a place to retrieve metadata and information 
about a challenge. DREAMTools can be used as a standalone appli-
cation or as a library making it a useful tools to be included in other 
software or pipelines. Developers who use the proposed layout will 
not need to change anything regarding the standalone application 
that will automatically recognize the challenge. In summary, we 
hope that DREAMTools will be a useful tool for researchers inter-
ested in benchmarking their methods against the state-of-the-art as 
defined by previous DREAM challenges, and to those developing 
new collaborative competitions within DREAM or elsewhere.
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Supplementary material
This section covers tools used in the DREAM scoring functions.

1.1 Binary classification problem
Binary classification is the task of classifying the elements of a data 
set into two groups (e.g., a medical testing to determine if a patient 
has certain disease or not). It has been used in many of the DREAM 
challenges16 to evaluate prediction performance as compared to a 
gold standard. Given a binary classifier, there are four possible out-
comes that can be arranged in a 2 × 2 contingency table filled with 
true positives (TP), true negatives (TN), false positives (FP), and 
false negatives (FN). False positives are also known as false alarms 
or type I error and the false negative are also known as miss or type 
II error. The contingency table generally fills columns with actual 
values and rows with the prediction. True positive being in the top 
left corner. See Table 2.

The column ratios are the proportion of the population with a given 
condition (positive or negative).

1.	 The true positive rate (TPR) is the ratio of true positive by 
the sum of positive conditions. The TPR value also known as 
sensitivity or recall is a measure of completeness:

recall sensitivity
TPTPR
P

= = = (16)

2.	 The false negative rate (FNR) also known as miss rate is:

miss rate
FNFNR
P

= = (17)

3.	 The false positive rate (FPR):

fall out
FPFPR
N

= = (18)

4.	 The true negative rate (TNR) also known as specificity:

specificity
TNTNR
N

= = (19)

Note that these ratios are independent of the total number of condi-
tions (i.e., there are independent of the prevalence).

The row ratios are computed as follows:
1.	 The positive predictive values (PPV) or precision is a meas-

ure of fidelity:

precision
+

TPPPV
TP FP

= = (20)

2.	 The false discovery rate (FDR):

FPFDR
TP FP

=
+

(21)

3.	 The false omission rate (FOR):

FNFOR
FN TN

=
+

(22)

4.	 The negative predictive values (NPV):

TNNPV
FN TN

=
+

(23)

Note that these ratios have denominator that combines positive and 
negative (i.e. they depends on the prevalence).

Table 2. Contingency table for a binary classifier.

Condition/Gold standard

Condition 
Positive (P)

Condition 
Negative (N)

Prediction
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

From the contingency table, many metrics can be used to measure 
the performance of a classifier. Some may be more appropriate than 
others depending on the problem posed or the prevalence of the 
classes considered (see below). A useful technique to visualize and 
select classifiers is the Receiver Operating Characteristics (ROC) 
graph, which have long been used in signal detection theory38. Effi-
cient algorithms to compute ROC graphs and practical issues can 
be found in 39. The next section will describe the ROC analysis in 
details. Before, let us provide some common equations and terminol-
ogy used in the evaluation of binary classifiers and ROC analysis.

The prevalence mentioned earlier (also known as balance) is the 
ratio of positive conditions to the total population:

prevalence
P

P N
=

+
(15)

where P is the total number of positives (i.e., TP + FN) and N the 
total number of negatives (i.e., TN + FP). The total population is 
denoted T = P + N.

From the 4 basic numbers of the contingency table, 8 ratios can be 
obtained by dividing those numbers by either the sum of the rows 
or the sum of the columns.
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There are a number of other metrics derived from those 8 numbers. 
We can mention the accuracy and F-measure. The accuracy meas-
ures the fraction of all instances that are correctly categorized:

.
TP TNACC

P N
+

=
+ (24)

Another related measure used for instance in D9C2 challenge 
(See Section D9C2) is balanced accuracy (BAC):

1

2

TP TNBAC
P N

 = +  
(25)

in other words, the arithmetic average of the sensitivity and spe-
cificity. The BAC metric avoids inflated performance estimates on 
imbalanced data sets.

The F-measure or balanced F-score (F1 score) is the harmonic mean 
of precision and recall:

	         
×

= =
+1

precision recall
F-measure F 2

precision recall
             (26)

The F-measure is often used in the field of information retrieval 
for document classification with large scale data where perform-
ance needs to place more emphasis on either precision or recall. 
Note, however, that the F-measure does not take the true negatives 
into account, which appears clearly in this other formulation of the 
F-measure/F1 score:

	          
= =

+ +1

2TP
F-measure F

2TP FP FN                    
(27)

1.1.1 AUPR and AUROC curves. It is common to explore com-
plementary metrics simultaneously varying a cutoff of the decision 
boundary. The pair precision-recall is used to estimate a first metric 
known as the precision-recall curve (AUPR). The true positive rate 
and false positive rate pair is used to estimate a second metric called 
AUROC (Area Under the receiver operating characteristic (ROC) 
curve).

The precision and recall are therefore functions of a varying 
parameter, k, in a precision-recall curve and can be expressed as:

( ) ( )
( )

( ) ( )

TP k TP kprecision k
TP k FP k k

= =
+

(28)

and:

( )
( )

TP krecall k
P

= (29)

similarly, the receiver operating characteristic (ROC) curve explores 
the trade-off between true and false positive rates as a function of a 
varying k parameter. The TPR and FPR are denoted:

( )
( )

TP kTPR k
k

= (30)

and:

( )
( )

FP kFPR k
N

= (31)

The AUROC is a single measure that is the integral of the TPF/FPR 
curve. Similarly the AUPR is a single measure that is the integral of 
the recall-precision curve.

The values of recall and precision range from zero to one with one 
being the optimal value for precision and min(k/P, 1) being the 
optimum for recall at depth k. The precision-recall curve explores 
changes in accuracy as k increases.

Note that in the case of a discrete classification, the ROC curves 
contains only 1 point.

1.1.2 Matthews correlation coefficient. An additional measure 
that can easily be computed is the Matthews correlation coefficient 
(MCC), which is a measure of the quality of a binary classification40. 
It can be used even if the classes are of very different sizes (low 
or high prevalence). The MCC can be calculated directly from the 
confusion matrix using the formula:

( )( )( )( )
MCC

TP TN FP FN
TP FP TP FN TN FP TN FN

× − ×
=

+ + + +
(32)

The MCC is also known as the phi coefficient, which is the 
chi-square statistic for a 2 × 2 contingency table:

2

MCC
T
χ

= (33)

where T is the total number of observations.

1.2 Regression Problem
In a regression problem the task is to predict the numerical values 
for a set of variables called the dependent variables from a different 
set of variables (independent variables).

1.2.1 Root Mean Square Error. The root-mean squared error 
(RMSE) that averages the quadratic errors of the individual meas-
urements, that is, the differences between the actual values of the 
dependent variables (y) and those predicted from the model (ŷ��).

=

= ∑ 2

1

1
ˆ( – )

n

i i
i

RMSE y y
n

(34)

1.2.2 Pearson correlation. The Pearson product-moment correla-
tion coefficient (PCC) is a measure of the linear correlation between 
two variables. The measure indicates a total positive correlation 
(+1), no correlation (0) or total negative correlation (-1). For a 
population, it is usually denoted � ρ

X,Y
 and defined as

ρ
σ σ,

cov(X,Y)
=X Y

X Y

(35)
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Where cov is the covariance between the two variables and σ the 
standard deviation. For a sample, we can substitute estimates of the 
covariances and variances based on the sample x and y of length n. 
One formulation for the sample Pearson correlation coefficient is:

2

∑

∑ ∑2 2– –
i i

xy 2

x y – nx y
r =

x nx y ny
(36)

with x  and y  the sample means of x and y.

1.2.3 Spearman’s rank correlation. Spearman’s rank correlation 
coefficient or Spearman’s rho denoted ρ is a nonparametric meas-
ure of statistical dependence between two variables. It assesses how 
well the relationship between two variables can be described using 
a monotonic function. Spearman’s coefficient is appropriate for 
continuous and discrete variables, including ordinal variables.

The Spearman correlation coefficient is defined as the Pearson 
correlation coefficient between the ranks of variables. For a sample 
of size N, the N raw scores X

i
, Y

i
 are converted to ranks x

i
, y

i
, and 

ρ is computed from:

2

2

6
1 .

( 1)
id

N N
ρ = −

−
∑ (37)

where d
i
 = x

i
 – y

i
, is the difference between ranks. Note that identi-

cal values are assigned a rank equal to the average of their positions 
in the ascending order of the values.

1.2.4 Concordance correlation coefficient. The concordance cor-
relation coefficient (CCC) measures the agreement between two 
variables41 and is denoted ρ

c
:

( )22 2

2 x y
c

x y x y

ρσ σ
ρ

σ σ µ µ
=

+ + −
(38)

It can be used as a measure of the correlation between two variables 
around the 45 degree line from the origin. It is used for instance in 
challenge D9C341.

1.2.5 Concordance index. In D7C2 challenge (See Section D7C2), 
an exact concordance index was used as a scoring metric. The con-
cordance index (c-index) was first introduced to the biomedical 
community in 42. It is a measure of association between the pre-
dicted and observed failures in case of right censored data. In the 
absence of censored data, the c-index estimates the Mann–Whitney 
parameter. Note that censoring is a condition in which the value of 
a measurement or observation is only partially known (e.g., impact 
of a drug on mortality rate for living subjects that may die before 
the end of the study).

We use here below the same formulation as in the Supplementary 
Note 3 in Costello, et al.27. For a given drug d, we define R

d
 = {r

1
, 

r
2
,..., r

N
} a rank order for N predictions (e.g., N cell lines). Similarly, 

we define G
d
 = {g

1
, g

2
,..., g

N
} a rank order for the gold standard.

2
( , ) ( , , , )

( 1)d d i j i j
i j

c G R h g g r r
N N <

= =
− ∑c-index (39)

where
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
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i j i j i j
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h g g r r g g
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(40)

In the previous formulation of the c-index, the variance of the gold 
standard data set is not taken into account. A probabilistic c-index 
(denoted pc-index) was introduced in Costello et al.27, Bansal 
et al.28 and calculated as follows:

2

2

( , , )

2
( , , , , )

( 1)
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(41)

where
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        (42)

and 2
ds is the pooled variance to account for the uncertainties of 

the gold standard. The equation erf is the standard error function 
2

0

2
( ) .

a terf a e dt
π

−= ∫

In the case of the NCI-DREAM challenges, the final score was a 
weighted average of the pc-index, which we termed the weighted, 
probabilistic c-index (wpc-index), where the weights w

d
 for each 

drug d reflect the quality of the measured data for d, accounting for 
the range of total response and missing values. The wpc-index is 
calculated as:

index
d dd

dd

w pc
wpc

w
⋅

= ∑
∑

− (43)
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aspects of tool or algorithm development, and the package described here will be helpful for evaluating
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Dear Nicola,

Thanks a lot for your review and comments.

It is true that more challenges will be added in the future and that the paper would be become even
longer ! We are thinking about reducing the paper's length in future versions and representative
examples would be a good solution.

As for the installation issues that other reviewers' faced, we have improved the code  and
documentation to take into account any issues and will keep improving the installation. As
mentionned in other reports's comments, we will provide a DREAMTools pre-compiled package in
the close future that should help even more.

Thanks again.

Thomas Cokelaer on behalf of DREAMTools developers. 
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channel of Anaconda (https://www.continuum.io/downloads). Installation of the latest
DREAMTools release should now be easier for MAC and Linux users as explained within the
online documentation (http://dreamtools.readthedocs.org/en/latest/#installation).
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easily access and download the data as well as implement the evaluation metrics. I have have not judged
the technical aspects of DREAMTools but I note that the difficulties is installing the software experienced
by Konrad Hinsen points to the fact that is it of limited usability at this moment. In summary, I believe that
DREAMTools can be approved in the off chance that new DREAM challenges use the package but at the
moment it is difficult to install and of little use.

 No competing interests were disclosed.Competing Interests:

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have significant
reservations, as outlined above.

Author Response 18 Jan 2016
, European Bioinformatics Institute (EMBL-EBI),Wellcome Trust GenomeThomas Cokelaer

Campus, Cambridge, UK

Dear Rafael,

First of all, thank you very much for your time in reviewing this paper.

From your experience and concerns, we'd like to clarify why DREAMTools is a valuable tools for
the scientific community.

First of all, we acknowledge that the installation does not work for every platform and system; the
fact is that we did not consider all platforms and systems during our development ! Even though

Page 23 of 29

F1000Research 2016, 4:1030 Last updated: 24 JUN 2020

https://doi.org/10.5256/f1000research.7664.r11489
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 

First of all, we acknowledge that the installation does not work for every platform and system; the
fact is that we did not consider all platforms and systems during our development ! Even though
the Python language is cross-platform by definition, it is nevertheless also linked to packages that
require compilation (e.g., numpy). Although DREAMTools provides a Python API, behind the
scene we also use R and Perl and C languages. Today, Python and R lead the data science but
new languages (e.g., Julia) will also enter the scene. It is clear that one of the struggles many data
scientists face nowadays is to design software that would work for everyone in this complex
multi-language scenario. People have worked hard for the last decades without a definite solution.
This does not mean we cannot and the Anaconda solution is one example of a great initiative that
aim at alleviate this general issue.

We are moving towards that direction by proposing to use Anaconda to install some of the
dependencies on which DREAMTools relies. Ideally, we'd like to provide also DREAMTools as an
Anaconda package, which would solve lots of the problems we are currently facing.

Note that once Anaconda is installed, the DREAMTools package can be installed under Linux in a
couple of minutes (See our Travis continous integration
https://travis-ci.org/dreamtools/dreamtools). This is also true under Windows 7 and Mac 10.10

Coming back on DREAMTools itself and its scientific interest, we believe that DREAMTools has
already been valuable. First, because it was used in a few challenges (e.g., DREAM7, parameter
estimation challenge, DREAM8 HPN Breast Cancer challenge) as the base code for the scoring
functions during the challenge itself and to produce results and figures in publications. Second,
because it assembles data and scoring functions from old challenges (DREAM2 to DREAM6) that
would not have been available otherwise. Besides, all codes in DREAM2 to DREAM6 were
originally written in matlab. One of our aim was to provide open source codes, which are now
available inside DREAMTools. We also do not agree with this statement:

"At the moment, any group interested in benchmarking their prediction method for a particular
challenge can easily access and download the data as well as implement the evaluation metrics"

Data are accessible indeed but scoring metrics needed to be recoded and are now available
thanks to the effort that have been put in  DREAMTools. Of course each group can recode its own
evaluation metric but what is the point since it has been done and gathered in a single place. The
idea of DREAMTools is that each group can just re-use our code since it is supported by the
authors who wrote the scoring functions used in DREAM challenges !

You also wrote: "I believe that DREAMTools can be approved in the off chance that new DREAM
challenges use the package". More than 15 scoring functions for 15 of the earlier DREAM
challenges have been made available to the open-source community. Another 15 scoring functions
for more recent challenges have been made available within a single framework factorising code in
the process. We believe that new challenges will be added either by DREAM developers or
members of the open-source community.

Again we thank you for your time and feedbacks.

Thomas Cokelaer on behalf of DREAMTools developers 

 No competing interests were disclosed.Competing Interests:

Author Response 30 Mar 2016

Page 24 of 29

F1000Research 2016, 4:1030 Last updated: 24 JUN 2020



 

Author Response 30 Mar 2016
, European Bioinformatics Institute (EMBL-EBI),Wellcome Trust GenomeThomas Cokelaer

Campus, Cambridge, UK

Dear Rafael,

For your information, DREAMTools is now available on the bioconda (https://bioconda.github.io/)
channel of Anaconda (https://www.continuum.io/downloads). Installation of the latest
DREAMTools release should now be easier for MAC and Linux users as explained within the
online documentation (http://dreamtools.readthedocs.org/en/latest/#installation).

Best
Thomas 

 No competing interests were disclosed.Competing Interests:

 26 November 2015Reviewer Report
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© 2015 Hinsen K. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution License

work is properly cited.

   Konrad Hinsen
Centre de Biophysique Moléculaire (UPR4301 CNRS), Rue Charles Sadron, Orléans, France

This article describes a software tool that implements in a transparent and reusable way the scoring of
DREAM challenges, covering 80% of the challenges that have taken place. The tool thus ensures
replicability of past challenges and also permits researchers to use them in evaluating their future work.

The software is fully open and well documented, conforming to the highest standards of open science.
The article is clear and explains both the motivation for and the design of the software in sufficient detail.

Unfortunately I did not succeed in installing and running the software following the provided instructions
(see   and https://github.com/dreamtools/dreamtools/issues/60

 for the details). These issues seem minor, buthttps://github.com/dreamtools/dreamtools/issues/59
prevent a full evaluation at this time. This is my only reason for approving this article with reservations.

 No competing interests were disclosed.Competing Interests:

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have significant
reservations, as outlined above.

Author Response 04 Dec 2015

, European Bioinformatics Institute (EMBL-EBI),Wellcome Trust GenomeThomas Cokelaer
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, European Bioinformatics Institute (EMBL-EBI),Wellcome Trust GenomeThomas Cokelaer
Campus, Cambridge, UK

Dear Konrad,

First of all thanks a lot for your review and comments. 

The main issue you had was that the installation failed, which is unfortunate indeed. It appears that
you tried to install DREAMTools using Python3 and we developed the software for Python2 only.
The paper did not mention the Python2/3 compatibility and this may have misled you as it would
misled many people. Even though we were mentionning in the README file that DREAMTools is
developed for Python2 only, we fully understand that users may use Python3 by default. The
rationale for sticking to Python2 was that a few librariries on which we were relying were not
available for Python3 at the time we developed DREAMTools. Meanwhile, most of them have been
ported to Python3 but one. Yet, we decided to port DREAMTools to Python3 since we also provide
of temporary python3 version of the library that is not yet available for Python3. Consequently,
DREAMTools is now available for Python2.7 and various variant of Python3.X . We hope that this
should help you to further test the software.  The README/installation section have been modified
to reflect those changes and guide users in the installation process.

As for the issues that you have reported    and https://github.com/dreamtools/dreamtools/issues/60
 we believe that they should be fixed by now.https://github.com/dreamtools/dreamtools/issues/59

(The first error was enterily related Python3 and second issue has been solved by providing
informative message to the user and additional documentation).

We have released a new version of DREAMTools on pypi website and the current official release is
1.1.1

We thank again the reviewer for his time and comments that motivated us to port DREAMTools to
Python3 so as to give access to the software to a wider community.

Best
Thomas Cokelaer on behalf of the DREAMTools team. 

 No competing interests were disclosed.Competing Interests:

Reviewer Response 08 Dec 2015
, Rue Charles Sadron, Orléans, FranceKonrad Hinsen

Dear Thomas,

thanks for looking into this, and working on Python 3 compatibility. I do understand that Python 3
compatibility is not trivial!

I tried once more to install dreamtools for Python 3, following the instructions, but failed again. The
problem comes from a dependency (see https://github.com/dreamtools/dreamtools/issues/61), so I
am not sure there is much you can do about it.

Next I tried installing dreamtools with Python 2. That fails as well, again because of a dependency
(again gevent!) that fails to install correctly. That may well be specific to the MacOS platform, or to
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Next I tried installing dreamtools with Python 2. That fails as well, again because of a dependency
(again gevent!) that fails to install correctly. That may well be specific to the MacOS platform, or to
some other detail of my computational environment. I suspect there isn't much you can do about it,
but it still means that I cannot test-drive dreamtools at all. 

 NoneCompeting Interests:

Author Response 08 Dec 2015
, European Bioinformatics Institute (EMBL-EBI),Wellcome Trust GenomeThomas Cokelaer

Campus, Cambridge, UK

Dear Konrad,

I'm sorry to see that the installation causes problems. The portage of DREAMTools to Python3 was
done under Linux systems for different versions of Python3 (3.3, 3.4, 3.5) and tested on  Travis
(https://travis-ci.org/dreamtools/dreamtools). The gevent external library may not be needed strictly
speaking so we can probably find a workaround.

Another solution that we will provide very soon is to use Anaconda environment with pre-installed
packages (e.g. gevent). In the next version of DREAMTools, we will provide a conda-compatible
package to guarantee that the installation is possible on all systems. We have tested this option
recently on another software with success.

Again sorry to hear that you cannot test the software easily and we'll work on making this possible
as soon as possilble.

Regards
Thomas Cokelaer 

 No competing interests were disclosed.Competing Interests:

Reviewer Response 10 Dec 2015
, Rue Charles Sadron, Orléans, FranceKonrad Hinsen

The gevent problem I ran into under Python 2.7 turned out to be known already:
https://github.com/gevent/gevent/issues/656. Since it is specific to MacOS 10.9, I tried on a
machine that runs 10.10 and I managed to install dreamtools there with no(!) problems (Python 2.7,
I didn't try Python 3 yet).

Unfortunately, fragile dependencies are becoming more and more of a problem in the Python
universe. I wish you all the luck you need with an approach based on Anaconda - my own
experiences with that approach are mixed to say the least.

To get a first experience with dreamtools, I tried running the command lines given as examples in
the README. Unfortunately, I ran into serious usability issues (see
https://github.com/dreamtools/dreamtools/issues/63), and in particular it seems that the example
dataset is not open. Could you suggest another dataset I can work with? 

 NoneCompeting Interests:
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Author Response 18 Jan 2016
, European Bioinformatics Institute (EMBL-EBI),Wellcome Trust GenomeThomas Cokelaer

Campus, Cambridge, UK

Dear Konrad,

Having a Python software that runs on all platforms/systems is a challenge by itself ! The issue with
gevent on MacOS 10.9 you got is an example, which is not unique. This is a general issue for the
scientific community and as you pointed out both for users and developers. I think Anaconda does
help a lot. I have started to use Anaconda only recently but I see a great value for future
development even though not all problems are fixed. So, we decided to provide a solution based
on Anaconda for DREAMTools. We do not yet provide a pre-compiled version of DREAMTools
within anaconda.org but this may be the best solution for future versions. For now,  DREAMTools is
still downloaded from Pypi but most dependencies (e.g., numpy) can be obtained as pre-compiled
version from Anaconda packages.

As for the problems you reported in the issue 63 on github, I fully appreciate your concerns and the
API and examples have been updated to make user's experience a bit better. One of the major
issue was that the example in the documentation failed because synapse expected the condition of
use (of the data) to be accepted inside the browser. So, the code was changed to tell the user what
to do in this situation.

Other cryptic messages and issues reported in the issue 63 should have been addressed as well.

We also suggest another challenge in the examples, which do not require access to synapse
(challenge D6C3).

Thomas Cokelaer 

 No competing interests were disclosed.Competing Interests:

Author Response 30 Mar 2016
, European Bioinformatics Institute (EMBL-EBI),Wellcome Trust GenomeThomas Cokelaer

Campus, Cambridge, UK

Dear Konrad,

For your information, DREAMTools is now available on the bioconda (https://bioconda.github.io/)
channel of Anaconda (https://www.continuum.io/downloads). Installation of the latest
DREAMTools release should now be easier for MAC and Linux users as explained within the
online documentation (http://dreamtools.readthedocs.org/en/latest/#installation).

Best
Thomas 

 No competing interests were disclosed.Competing Interests:
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