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exploitation of more appropriate data. Recent successes in physics, 
such as the discovery of gravitational waves and the Higgs boson, 
illustrate the benefits of model-based experimentation very well. 
The biomedical field needs such examples of its own.

We firmly believe that computational biologists can contrib-
ute productively to model-driven experimental research. Models 
derived from more classical post-mortem data analysis should 
now guide the next wave of hypothesis generation, experimen-
tal design and data collection. To identify biomedical problems 
ready to be tackled, we have invited computational biologists 
from around the world to take part in the Idea DREAM Challenge 
(http://tinyurl.com/dreamidea). Participants were asked to propose 
biomedical research questions for which computational models have 
exploited available data to the limit and are ready to guide new data 
collection efforts to move the field forward. Through peer review 
and discussions among participants, we selected two winning 
ideas. We are now matching the winning participants with wet-lab 
researchers to generate the necessary data.

The first idea addresses the challenge of drug–target interac-
tion mapping. The potential chemical space of drug-like com-
pounds is thought to contain on the order of 1020 molecules, 
making exhaustive exploration infeasible. Furthermore, currently 
available bioactivity measurements vary greatly between labs and 
assay types, and hence are not yet sufficient to reliably guide the 
computational prediction of compound–target relationships at a 
large scale. One of the winning DREAM ideas proposed a model-
guided experimental design and mapping effort to prioritize the 
most potent target selectivity experiments among the massive 
search space of compounds and their potential targets. Such tar-
geted experiments, which will be  predicted by computational 
models, are expected to offer a cost-effective alternative to the 
more systematic exploration efforts, effectively providing higher 
information content with the same amount of experiments. 

The other winning DREAM idea tackles the problem of regula-
tory network inference, predicting which regulatory proteins con-
trol the expression of which target genes. The proposal is to sys-
tematically and iteratively collect multi-omic measurements under 
different genetic and environmental perturbations from both bulk 
populations and single cells. These data will be collected in a model-
guided manner, in which the initial model is a consensus derived 
from published datasets to avoid duplication of experimental effort 
and enable maximal discovery. The resulting dataset will serve as 
a better gold standard to validate computational predictions from 
existing and new inference methods and will help identify the most 
informative datasets for regulatory network discovery.

We envision that the Idea DREAM Challenge is just the beginning 
of many more endeavors in which data analysts and computational 
biologists can be actively engaged in all stages of the scientific pro-
cess. Model builders and experimentalists would benefit from work-
ing together to design better studies that will accelerate scientific 
discovery. 
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The inconvenience of data of 
convenience: computational research 
beyond post-mortem analyses

To the Editor: Over the last two decades researchers have wit-
nessed an explosion in the amount and diversity of data col-
lected in biological and medical studies. These data are often 
generated without the input of those who will later analyze it. 
Computational analyses are therefore, in the words of statisti-
cian Ronald Fisher, mostly performed ‘post mortem’. We believe 
that a more efficient scientific process should use computational 
modeling based on previously acquired data to guide targeted 
data collection efforts. 

We consider systematic data collection and model-driven data 
collection as distinct efforts. Large-scale systematic data collec-
tion efforts, such as TCGA, ENCODE, REMC, GTEx and the 
Connectivity Map, to name a few, have unquestionably led to 
important and actionable findings such as identifying treat-
ment targets (https://cancergenome.nih.gov/researchhighlights/
tcgainaction/tcga-data-used-for-loxo101-drug-development) 
and gaining insight into gene regulatory processes1. However, 
such data could have been even more useful. For example, in 
our own work on glioblastoma subtype discovery2 , we could 
use only 46% of the TCGA samples because of missing measure-
ments, reducing the power of the study. In another example, the 
fixed concentration levels of small-molecule compounds in the 
Connectivity Map were suboptimal for some compounds and cell 
contexts, leading to substantial batch effects3.  

DREAM Challenges, which harness the collective skills of 
computational biologists across the world to solve biologi-
cal and medical problems using ‘data of convenience’, have 
illustrated the difficulties in this process4–6. For instance, in a 
DREAM challenge for predicting response to drugs in patients 
with rheumatoid arthritis, using the largest available collection 
of single-nucleotide polymorphism (SNP) data did not improve 
predictions over those obtained using the clinical predictors5. 
In a toxicogenetic challenge, genome-wide association study 
(GWAS) data by themselves were not predictive, but the results 
were markedly better when these were taken together with 
RNA-seq data, available for only 38% of the patients4. Finally, 
in a DREAM challenge assessing and improving drug sensitivity 
prediction algorithms, having data from many omics modalities 
did not provide an advantage over the use of gene expression 
data alone6. We concede that these situations may arise because 
some computational approaches are just not good enough for the 
task. However, the fact that none of several dozen independent 
expert teams were successful in solving the problems using the 
same data suggests that, instead, more or different kinds of data 
may be needed. The question then arises: How can one efficiently 
determine which data we need to, rather than can, measure to 
accelerate scientific discovery?

Hypothesis-driven experiments are common in the life sci-
ences but tend to be small in scale. We argue that computational 
models, capable of generating targeted hypotheses that capture 
the complexity of biological systems, should be used to guide data 
collection. This offers the possibility not only of speeding up data 
collection but also of yielding better biological insights, thanks to the 
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