














Validation of frequently selected genes
We defined a simple procedure to obtain aWOC gene selection for each
of the subchallenges. It consisted of selecting the most frequently
selected genes for each subchallenge (different colored bars in Fig 2A).
To validate the predictive performance of the WOC gene selection in-
dependent from the participant’s location prediction methods, we
predicted the cell locations using DistMap, themethod used to generate
the ground truth locations for each cell for the challenge. We scored the
predictions using the same scoring metrics as for the challenge, esti-
mating the significance of the scores through generated null distribu-
tions of scores for each subchallenge. The null distribution of the scores
was generated by scoring the DistMap location prediction using 100
different sets of randomly selected genes. For each subchallenge and
each score, we estimated the empirical distribution function and then
calculated the percentile of the values of the scores obtained with the
WOC gene selection.

The null distributions and the values of the scores obtained with the
WOC gene selection are shown in Fig 2D. All values of the scores for
subchallenge 1 fall in the 99th percentile. For subchallenge 2, s1 and s3 fall
into the 92nd percentile and s2 in the 100th percentile. For subchallenge 3,
all scores fall in the 100th percentile. Overall, the performance of DistMap
with the WOC selected genes performs significantly better than a
random selection of genes. The actual values of the scores are on par
with those achieved by the top 10 teams in the challenge.

Discussion

In this article, we report the results of a crowdsourcing effort or-
ganized as a DREAM challenge (15) to predict the spatial

arrangement of cells in a tissue from their scRNAseq data. Analysis
of the top performing methods provided many unbiased insights
such as the usage of either similarity-based approaches ormachine
learning models to predict cell location. The latter, in accordance
with current literature (8, 11, 14), were shown to be preferable. We do
not think this is due to bias induced by the fact that the silver
standard was generated using a similarity-based approach.

Indeed, we showed for the zebra fish dataset that the silver
standard is robust to the usage of Seurat (Fig S5), a different
method to generate the cells’ positions. Also, the good performance
and robustness of nonlinear machine learning methods (Table S1)
is proof that the association between the expression of mapped
genes and a cell’s position is not due to a simple gradient of ex-
pression in space. Consequently, we conjecture that a combination
of these two approaches would be most preferable for predicting
cells’ unknown locations. Namely, similarity-based approaches can
be used tomake position assignments for a subset of cells with high
similarity of gene expression to a spatially resolved reference. Then,
machine learning approaches take advantage of this information to
predict the positions of the remaining cells.

Given that for all approaches, the selection of informative genes
with spatially resolved expression is essential, the main finding of
this study is how to select these genes based on their cell-to-cell
expression variability in the Drosophila and zebra fish embryos to
best predict a cell’s localization. The most selected genes had a
relatively high entropy, hence high variance and high expression
values while also showing high spatial clustering. The smaller the
number of selected genes, that is, going from 60 to 40 and to 20, the
more these features became apparent (Figs 3 and S8). The observed
advantage of genes with high overall expression in cells might lead

Figure 5. Wisdom of crowds location prediction.
The location predictions for each cell by the top performing teams in the post-challenge cross-validation phase were aggregated in the wisdom of the crowds solution
based on a k-means clustering approach.
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to less dropout counts in the scRNAseq data, a known disadvantage
of the technology, leading to more accuracy in the cell placement.
However, we also found that most in situ genes were differentially
expressed across cell clusters in the scRNAseq data and top three
differentially expressed genes have notable overlap across chal-
lenges (see Figs 4 and S15). For Drosophila, the nine prominently
spatially distinct cell clusters previously identified (11) are pre-
served when considering the most frequently selected 60 or 40
genes and for 40 genes in zebra fish. However, for both organisms,
the number of clusters is reduced when considering only the most
frequently selected 20 genes. This finding is in line with the con-
clusions of Howe et al (12), where in a related task of location
prediction, the performance stabilized after the inclusion of 30
genes. Finally, the WOC gene selection and the k-means clustered
WOC model for cell localization performed comparably or better
than the participant’s models, showing once more the advantage of
the wisdom of the crowds. All these results can be explored for
Drosophila in animated form at https://dream-sctc.uni.lu/.

Given that it has been shown that positional information of the
anterior–posterior (A-P) axis is encoded as early in the embryonic
development as when the expression of the gap genes occurs (23,
24), we thought that it should be possible to implement in algo-
rithms for this challenge the information contained in the regu-
latory networks of Drosophila development (25). Although only a
small number of participants—including the best performers—
directly used biological information related to the regulation of the
genes or their connectivity, the most frequently selected genes in
all three subchallenges have interesting biological properties. In-
deed, gap genes such as giant (gt), kruppel (kr), and knirps (kni)
were selected in all three subchallenges (see Fig S17 and Table S7
that also includes kni-like knrl), although tailless (tll) and
hunchback (hb) were not. Along the A-P axis, maternally provided
bicoid (bcd) and caudal (cad) first establish the expression patterns
of gap and terminal class factors, such as hb, gt, kr, and kni. These
A-P early regulators then collectively direct transcription of A-P
pair-rule factors, such as even-skipped (eve), fushi-tarazu (ftz),
hairy (h), odd skipped, (odd), paired (prd), and runt (run) which in
turn cross-regulate each other. Not being part of the in situs,
neither bcd, nor cad were selected but ama sitting near bcd in the
genome might have been selected for its similar expression
properties. Furthermore, we also found that pair-rule genes were
most prominently selected in subchallenges 1 (eve, odd, the paired-
like prd and bcd) and 2 (h, ftz and run). A similar cascade of ma-
ternal and zygotic factors controls patterning along the dorsal–
ventral axis were dorsal (d), snail (sna), and twist (twi) specify
mesoderm and the pair-rule factors eve and ftz specify location
along the trunk of the A-P axis. Again, sna and twi were selected in
all subchallenges and d in subchallenges 1 and 2. These selected
transcription factors specify distinct developmental fates and can
act via different cis-regulatory modules, but their quantitative
differences in relative levels of binding to shared targets correlate
with their known biological and transcriptional regulatory speci-
ficities (26). The rest of the selected genes were the homeobox
genes (nub and antp) and differentiators of tissue such as me-
soderm (ama, mes2, and zfh1), ectoderm (doc2 and doc3), neural
tissue (noc, oc, and rho), and EGFR pathway (rho and edl). The
observation that gap and pair-rule genes were prominently

selected is notable as it shows that information providing the
correct localization of a cell is encoded in scRNAseq at such early
developmental stages. Previous publications (23, 24) had shown
that the four gap genes could precisely place dorsal position for
cells, but the results described herein go beyond and show that
cells can be placed in the 3-D embryo map. The complete lists of
most frequently selected genes are available in Table S7.

Because only a publicly available silver standard existed, the
organization of this DREAM challenge brought risks. Without the
post-challenge phase, it would have been impossible to ensure that
the approach and methods implemented were robust and sound.
Overall, the single-cell transcriptomics challenge unveils not only
the best gene selection methods and prediction approaches to
localize a cell in the Drosophila and zebra fish embryo but also
explains the biological and statistical properties of the genes se-
lected for the predictions, including that spatially auto-correlated
genes are the most informative (1, 14). However, we think that the
approach defined here could be used or adapted when performing
similar cell-placing tasks in other organisms, including human
tissues. In fact, for all organisms studied, selecting the appropriate
marker genes for optimal cartography has been shown to have a
large effect on the performance (14). Given the importance of spatial
arrangements for disease development and treatment, we foresee
an application of these methods to medical questions as well.

Materials and Methods

Scoring

We scored the submissions for the three subchallenges using three
metrics s1, s2, and s3. s1 measured howwell the expression of the cell
at the predicted location correlates to the expression from the
reference atlas and included the variance of the predicted loca-
tions for each cell, whereas s2 measured the accuracy of the
predicted location and s3 measured how well the gene-wise spatial
patterns were reconstructed.

Let c represent the index of a cell, given in the transcriptomics data
in the challenge where 1 ≤ c ≤ 1,297. Each cell c is located in a bin εc 2
{1…3,039} at a position with coordinates r(εc) = (xc, yc, zc). Each cell is
associated with a binarized expression profile tc = (tc1, tc2,…,tcE), where
1 ≤ E ≤ 8,924, and a corresponding binarized in situ profile fc = (fc1,
fc2,…,fcK), where themaximumpossible value of K for whichwe have in
situ information is K = 84. For different subchallenges, we consider K
2 {20, 40, 60}. Using K selected genes, the participants were asked to
provide an ordered list of 10 most probable locations for each cell.
We represent with the mapping function A(c, i, K) the value of the
predicted i-th most probable location for cell c using K in situs.

For the first scoringmetric s1, we calculated the weighted average
of the MCC between the in situ profile of the ground truth cell
location fεc and the in situ profile of the most probable predicted
location for that cell.

s1 = �
N

c = 1

pKðc; AÞ
�N

i = 1pKði; AÞ
MCC

�
fAðc; 1;KÞ; fεc

�
;

where N is the total number of cells with predicted locations.

Predicting cells position from single-cell transcriptomics Tanevski et al. https://doi.org/10.26508/lsa.202000867 vol 3 | no 11 | e202000867 9 of 13

https://dream-sctc.uni.lu/
https://doi.org/10.26508/lsa.202000867


The MCC, or ϕ coefficient, is calculated from the contingency table
obtained by correlating two binary vectors. The MCC is weighted by
the inverse of the distance of the predicted most probable locations
to the ground truth location pK(c). The weights are calculated as
pKðc; AÞ = gd84ðc; AÞ

dK ðc; AÞ , where dKðc; AÞ = 1
10�

10
i = 1krðAðc; i; KÞÞ − rðεcÞk2,gd84ðc; AÞ is the value of dK(c, A) using the ground truth most

probable locations assigned with K = 84 using DistMap, and k⋅k2 is
the Euclidean norm.

The second metric s2 is simply the average inverse distance of
the predicted most probable locations to the ground truth location.

s2 = 1
N �

N

c = 1
pKðc; AÞ:

Finally, the third metric s3 measures the accuracy of recon-
structed gene-wise spatial patterns.

s3 = �
K

s = 1

MCC
�
tcs; fεcs

�
"c

�K

i = 1MCC
�
tci; fεir

�
"c

MCC
�
tcs; fAðc; 1; KÞs

�
"c;

where"c denotes that theMCC is calculated cell wise for each gene.
For 287 of the 1,297 cells, the ground truth location predictions

were ambiguous, that is, the MCC scores were identical for multiple
locations. These cells were removed both from the ground truth
and the submissions before calculating the scores.

The teams were ranked according to each score independently.
The final assigned rank rt for team t was calculated as the average
rank across scores. Teams were ranked based on the performance
as measured by the three scores on 1,000 bootstrap replicates of
the submitted solutions. The three scores were calculated for each
bootstrap. The teams were then ranked according to each score.
These ranks were then averaged to obtain a final rank for each team
on that bootstrap. The winner for each subchallenge was the team
that achieved the lowest ranks. We calculated the Bayes factor of
the bootstrap ranks for the top performing teams. Bayesian factor
of three or more was considered as a significantly better perfor-
mance. The Bayes factor of the 1,000 bootstrapped ranks of teams T1
and T2 was calculated as follows:

BFðT1; T2Þ = �
1000

i = 11
�
rðT1Þi < rðT2Þi

�
�1000

i = 11
�
rðT1Þi > rðT2Þi

�;
where r(T1)i is the rank of team T1 on the i-th bootstrap, r(T2)i is the
rank of team T2 on the i-th bootstrap, and 1 is the indicator function.

Entropy and spatial autocorrelation

The entropy of a binarized in situ measurements of gene G was
calculated as follows:

HðGÞ = −plog2p − ð1 − pÞlog2ð1 − pÞ;

where p is the probability of gene G to have value 1. In other words, p
is the fraction of cells where G is expressed.

The join count statistic is a measure of a spatial autocorrelation of a
binary variable.Wewill refer to the binary expression 1 and 0 as black (B)

andwhite (W). Let nBbe the number of binswhereG is expressed (G = B),
andnW = n −nB thenumber of binswhereG is not expressed (G =W). Two
neighboring spatial bins can form join of type J 2 {WW, BB, BW}.

We are interested in the distribution of BW joins. If a gene has a
lower number of BW joins that the expected number of BW, then the
gene is positively spatially auto-correlated, that is, the gene is
highly clustered. Contrarily, higher number of BW joins points to-
ward negative spatial correlation, that is, dispersion.

Following Cliff and Ord (27) and Sokal and Oden (28), the ex-
pected count of BW joins is as follows:

E½BW� = 1
2�i �j

wijn2
B

n2 ;

where the spatial connectivity matrix w is defined as follows:

wij =
�
1 if i ≠ j and j is in the list of 10 nearest neighbors of i
0 otherwise

The variance of BW joins is as follows:

σ2
BW = E

�
BW2� − E½BW�2:

where the term E½BW2� is calculated as follows:

E
�
BW2� = 1

4

	
2x2nBnW

n2 + ðx3 − 2x2ÞnBnWðnB + nW − 2Þ
n3

+
4
�
x21 + x2 − x3

�
n2
Bn2

W
n4



;

where
x1 = �

i
�
j
wij; x2 = 1

2�
i
�
j
wij − wij
� �2

; x3 = �
i

�
j
wij + �

j
wij

 !2

.

Note that the connectivity matrix w can also be asymmetric
because it is defined by the nearest neighbor function.

Finally, the observed BW counts are follows:

BW = 1
2�i �j wij

�
Gi − Gj

�2
:

The join count test statistic is then defined as follows:

ZðBWÞ = BW − E½BW�ffiffiffiffiffiffiffiffi
σ2
BW

p ;

which is assumed to be asymptotically normally distributed under
the null hypothesis of no spatial autocorrelation. Negative values of
the Z statistic represent positive spatial autocorrelation, or clus-
tering, of gene G. Positive values of the Z statistic represent negative
spatial autocorrelation, or dispersion, of gene G.

Implementation details

The challenge scoring was implemented and run in R version 3.5,
the post-analysis was performed with R version 3.6 and the core
tidyverse packages. We used the publicly available implementation
of DistMap (https://github.com/rajewsky-lab/distmap). MCC calcu-
lated with R package mccr (0.4.4). t-SNE embedding and visualization
produced with R package Rtsne (0.15). DBSCAN clustering with R
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package dbscan (1.1-4). We used t-SNE aiming for high accuracy (θ =
0.01), then clustered the t-SNE embedded data using density-based
spatial clustering of applications with noise (DBSCAN) (29). DBSCAN
determines the number of clusters in the data automatically based
on the density of points in space. The minimum number of cells in a
local neighborhood was set to 10 and the parameter ε = 3.5 was
selected by determining the elbow point in a plot of sorted distances
of each cell to its 10th nearest neighbor.

Code availability
Scoring scripts for the challenge are available at https://github.com/
dream-sctc/Scoring. Drosophila and zebra fish 10-fold CV datasets
can be found at https://github.com/dream-sctc/Data.

Data description

Reference database
The reference database comes from the BDTNP. The in situ ex-
pression of 84 genes (columns) is quantified across the 3,039
Drosophila embryonic locations (rows) for raw data and for
binarized data. The 84 genes were binarized by manually choosing
thresholds for each gene.

Spatial coordinates
One half of Drosophila embryo has 3,039 cells places as x, y, and z
(columns) for a total of 3,039 embryo locations (rows) and a total of
3,039 3 coordinates.

scRNAseq
The scRNAseq data are provided as a matrix with 8,924 genes as
rows and 1,297 cells as columns. In the raw version of thematrix, the
entries are the raw unique gene counts (quantified by using unique
molecular identifiers). The normalized version is obtained by di-
viding each entry by the total number of unique molecular iden-
tifiers for that cell, adding a pseudocount and taking the logarithm
of that. All entries are finally multiplied by a constant. For a given
gene, and only considering the Drop-seq cells expressing it, we
computed a quantile value above (below) which the gene would be
designated ON (OFF). We sampled a series of quantile values and
each time the gene correlation matrix based on this binarized
version of normalized data versus the binarized BDTNP atlas was
computed and compared by calculating the mean square root error
between the elements of the lower triangular matrices. Eventually,
the quantile value 0.23 was selected, as it was found tominimize the
distance between the two correlation matrices. The short se-
quences for each of the 1,297 cells in the raw and normalized data
are the cell barcodes.

Materials and correspondence

Requests for data, resources, and or reagents should be directed to
Pablo Meyer (pmeyerr@us.ibm.com).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000867.
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