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SUMMARY

We report the results of a DREAM challenge de-
signed to predict relative genetic essentialities based
on a novel dataset testing 98,000 shRNAs against
149 molecularly characterized cancer cell lines. We
analyzed the results of over 3,000 submissions over
a period of 4 months. We found that algorithms
combining essentiality data across multiple genes
demonstrated increased accuracy; gene expression
was the most informative molecular data type; the
identity of the gene being predicted was far more
important than the modeling strategy; well-predicted
genes and selected molecular features showed
enrichment in functional categories; and frequently
selected expression features correlated with survival
in primary tumors. This study establishes bench-
marks for gene essentiality prediction, presents a
community resource for future comparison with this
benchmark, and provides insights into factors influ-
encing the ability to predict gene essentiality from
functional genetic screens. This study also demon-
strates the value of releasing pre-publication data
publicly to engage the community in an open
research collaboration.

INTRODUCTION

Although genetic alterations of human tumors have become

increasinglywell characterized, the application of this knowledge
Cell Systems 5, 4
to clinical therapy has been limited. The promise of targeted can-

cer therapy requires both effective treatments and accurate,

easily tested biomarkers to identify patient populations likely to

respond to those treatments. Genes that are required for the sur-

vival of tumor cells, but not for normal cells, may provide an op-

portunity for specific targeting. This category of essential genes

creates preferential vulnerabilities only in the context of a tumor’s

specific genetic and epigenetic background, but not in contexts

lacking those alterations. For example, the PARP1 gene has

been shown to be essential in tumors deficient in BRCA1 or

BRCA2, thusmaking PARP inhibitors a candidate for treating se-

lective subtypes of breast and ovarian cancers (Bryant et al.,

2005; Farmer et al., 2005; Drew, 2015). Therefore, a critical

need exists to accurately predict differences in gene essentiality

across a wide variety of cancer genetic subtypes frommolecular

features.

Large-scale functional screening of molecularly characterized

cancer cell lines is a promising approach to generate pre-clinical

hypotheses of tumor subtypes associated with sensitivity to

functional perturbations. Several recent studies have identified

small numbers of validated biomarkers of preferential gene es-

sentiality based on statistical analysis of large-scale genetic

screens (Schlabach et al., 2008; Cheung et al., 2011; Koh

et al., 2012; Marcotte et al., 2012; Nijhawan et al., 2012; Ren

et al., 2012; Rosenbluh et al., 2012; Shain et al., 2013; Shao

et al., 2013; Marcotte et al., 2016). However, no study has yet

conducted a systematic analysis of modeling approaches de-

signed to infer predictive models of relative gene essentiality of

cancer cells from such functional screening projects. Such a

study is not only a challenging scientific problem, but one that

emphasizes the need for a community of scientists with a range

of expertise in data generation, predictivemodeling, and biologic

interpretation.
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The DREAM challenges (http://www.dreamchallenges.org/)

aim to assess computational models, contributed by re-

searchers across the world, to prediction tasks focused mainly

on biomedical research problems. Participating research teams

develop and fine-tune their predictivemodels during one ormore

model building rounds. In the final round, each research team

submits their best models, and, after the challenge is closed,

an unbiased assessment using standardized metrics is per-

formed on a blinded set of test data. Each challenge results

in a rigorous assessment of the provided solutions to problems

being addressed together with a performance ranking of teams

and methods.

We used DREAM challenges to study the predictability of rela-

tive gene essentiality by leveraging Project Achilles, which has

created one of the largest publicly available datasets containing

genome-wide RNAi-mediated screens in molecularly character-

ized cancer cell lines (Luo et al., 2008; Cheung et al., 2011; Bar-

bie et al., 2009; Cowley et al., 2014). Here, we simultaneously

release a new set of Project Achilles data (constituting one of

the largest public releases to date of RNAi screening data)

together with the results of an open community challenge in

which participants throughout the world were invited to assess

modeling approaches on pre-publication data, which was

released in tranches throughout the challenge.

RESULTS

Summary of Datasets and Challenge
Wepreviously published an assessment of the impact on prolifer-

ation andviabilityof 55,000small hairpinRNAs (shRNAs) targeting

11,000 genes in 216 cancer cell lines (Cowley et al., 2014). Here,
486 Cell Systems 5, 485–497, November 22, 2017
we extended this study with an additional 149 cell lines tested

for gene essentiality by a library of 98,000 shRNAs targeting

17,000 genes. Cell line screening data went through quality con-

trol including testing replicate reproducibility and confirming cell

line identity asdescribedpreviously (Cowleyet al., 2014). Toavoid

teams predicting off-target effects of RNAi screens, relative gene

essentiality scores were calculated using the DEMETER algo-

rithm, which models out and corrects for off-target miRNA seed

effects (STAR Methods, Tsherniak et al., 2017). Scores from

DEMETER are relative gene essentiality measures, as each

gene is compared with the mean cell line score (STARMethods).

The challenge also utilized molecular feature data from these 149

cell lines (genome-wide gene expression and copy-number data,

in addition tomutational profiling of 1,651 genes) from theCancer

Cell Line Encyclopedia (Barretina et al., 2012). Based on these

data, participants were tasked with training a predictive model

on a subset of lines with both molecular feature and relative

gene essentiality data and applying it to infer the relative gene es-

sentiality values for an additional batch of cell lines for which par-

ticipants could only accessmolecular feature data. Relative gene

essentiality valueswere hidden and subsequently comparedwith

predictions to assess model accuracy.

The challengewas conducted in three successive phases, dur-

ing which participants were provided with progressively larger

portions of the data to use for training, and predictions were eval-

uated using an independent test dataset. Conducting multiple

challenge phases allows participants to iteratively evolve their

modeling strategies based on the performance of models tested

in previous phases, and allows organizers to perform a post-hoc

analysis of the consistency of model performance across

independent evaluations. The three phases of the challenge,

http://www.dreamchallenges.org/
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respectively, used 45, 66, and 105 cell lines as the training set,

and 22, 33, and 44 cell lines as the test set. During the first two

challengephases, participants could submit anunlimitednumber

of models (Table S1 gives the number of models submitted in

each phase), and received real-time feedback through a leader-

board displaying the scores of all submitted models. In the final

phase, participants were limited to a maximum of two models

per team submitted for final scoring. All data used in this chal-

lenge was previously unpublished and are made available

together with information about the data generation, challenge

details, leaderboards, and source codes used to generate the

results at https://www.synapse.org/Broad_DREAM_Gene_

Essentiality_Prediction_Challenge. Teams’ solutions together

with corresponding descriptions for each sub-challenge can be

accessed in the Final Results section of the same web site.

Each phase consisted of three related sub-challenges,

including: (1) building a model that best predicts all relative gene

essentiality scores in the held-out test set using any feature data

(including gene expression, copy number, and/or mutation fea-

tures, aswell as any additional external information), (2) predicting

a subset of relative gene essentiality scores using only ten gene

expression, copy number, or mutation features per gene being

predicted, and (3) predicting a subset of relative gene essentiality

scores using only a total of 100 gene expression, copy number, or

mutation features across all genes being predicted (Figure 1A).

For sub-challenges 2 and 3, a smaller list of 2,647 genes was

selected for prediction by three main criteria (STAR Methods):

(1) interesting profiles of the relative gene essentiality data itself

(e.g., subset of cell lines displaying strong relative essentiality),

(2) cancer-related genes (Futreal et al., 2004; Ciriello et al.,

2013), and (3) some evidence of the gene as a known

or potential drug target (Basu et al., 2013; Patel et al., 2013). The

prediction tasks were designed to both obtain the best models

for predicting relative gene essentiality using the genetic charac-

teristics of the cancer cell lines and to gain insight into which ge-

netic features were most informative for these models.

Evaluating Relative Gene Essentiality Predictions
Predictions by 48 teams were scored by Spearman’s rank corre-

lation coefficient for each gene between the measured and pre-

dicted relative gene essentiality scores (Figures S1A–S1C). The

mean Spearman correlation scores across all submissions and

all predicted genes for final round submissions were 0.1957,

0.1649, and 0.1732 for sub-challenges 1, 2, and 3, respectively.

Overall team scores were ranked based on the average correla-

tion across all genes, and the statistical significance of the differ-

ence between team scores (Figures 1B–1D) was assessed using

the Wilcoxon signed rank test (Figures S1D–S1F). Sub-chal-

lenges 2 and 3 showed one statistically significantly best-per-

forming team. For sub-challenge 1, the scores of the top 4 teams

displayed statistically significantly improved performance from

the fifth ranked team, but were not statistically significantly

different from each other. A more stringent post-hoc test

(nonparametric Friedman’s test) determined that the top three

teams achieved improved performance from the fourth ranked

team (Figure S1G).

We tested whether the submitted predictions were better than

those of standard approaches by comparing them with the pre-

dictions of a baseline algorithm. For sub-challenge 1, we trained
a baseline regression algorithm (Lasso regression), on the set of

training cell lines from the final challenge round andmeasured its

performance on the test cell lines (Figure S2A). The majority

(77.09%) of genes (i.e., 11,362 genes out of 14,738) were only

weakly predicted (Spearman correlation between 0 and 0.4),

although a subset of genes were predicted with relatively high

accuracy (5.79% of genes, i.e., 853 genes, achieved Spearman

correlations above 0.4). We assessed the statistical significance

of model scores based on a permutation test in which the trained

baseline regression algorithmwas tested on 10,000 randomly re-

sampled test cell line collections with shuffled cell line labels. As

expected, the distribution of Spearman correlations for this null

model was centered around 0 (Figure S2B), where the baseline

model achieved average correlation of 0.1528. Twenty out of

the 21 predictions submitted to this sub-challenge achieved

scores outside of the 95% confidence interval of the null model

(i.e., 0.0211 Spearman correlation), suggesting that genetic cor-

relates with statistically significant predictive power can be in-

ferred from functional screens. The same type of analysis re-

vealed similar results for other sub-challenges (not shown here).

Ensemble Models Give Consistently High Performance
We next assessed whether relative gene essentiality prediction

could benefit from constructing ensemble models that average

results across numerous diverse modeling approaches used in

the challenge (the so-called wisdom of the crowd effect, Tables

S2, S3, and S4). For each sub-challenge, we constructed

ensemble models consisting of all individual models with ranks

1 through N, for each N up to the number of models submitted

in the final scoring round (Figures 1B–1D and S1). For each gene

(i.e., prediction task) the rank of each cell line in the ensemble

model was calculated as the average rank of the cell line across

the constituent models in the ensemble. For sub-challenge 1,

ensemble models performed better than or equal to the

individual best model (the best model and the ensemble of all

models were equivalent to the second significant digit in both

Spearman correlation, 0.23, and average rank, 8.67). For sub-

challenges 2 and 3, ensemble models significantly outperformed

all individualmodels.However,we suggest that this strongperfor-

manceshould not beover-interpreted, because individualmodels

were limited to 10 or 100 predictive features whereas ensemble

models could implicitly utilize more features by averaging across

models.

Sub-challenge 1 Results
Sub-challenge 1 was the most open-ended task of this DREAM

challenge; participants had to predict all relative gene essen-

tiality scores across all cell lines in the test set. Although any

feature data and prior knowledge was allowed, the top two

best-performing teams did not use the provided mutation data.

The best-performing team used a combination of representation

learning and kernel-based regression (STARMethods). The sec-

ond best-performing approach was an ensemble of multiple

kernel learning and random forest regression algorithms, but uti-

lized a restricted gene list based on literature (STAR Methods).

The third best-performing approach started with a series of

feature selection criteria to choose features from provided input

data and then scaled these selected features before feeding

them into a nonlinear regression algorithm (STAR Methods).
Cell Systems 5, 485–497, November 22, 2017 487
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Figure 1. Overview of the Broad-DREAM Gene Essentiality Prediction Challenge and Performance Results

(A) Schematic of the Broad-DREAM gene essentiality prediction challenge. The challenge consisted of three related sub-challenges. Sub-challenge 1 addressed

building a model that best predicts all gene essentiality scores in the held-out test set, using any feature data. Sub-challenge 2 addressed predicting a subset of

gene essentiality scores using only 10 gene expression, copy number, or mutation features per gene. Sub-challenge 3 addressed predicting a subset of gene

essentiality scores using only 100 gene expression, copy number, or mutation features in total. Teams’ performances for (B) sub-challenge 1, (C) sub-challenge 2,

and (D) sub-challenge 3 are summarized as the average Spearman correlation across all predicted genes at the top. Black lines in themiddle of blue boxes (‘‘team

rank’’) display the average rank of each team’s scores across 14,738 genes (for sub-challenge 1) and 2,647 genes (for sub-challenges 2 and 3), and the width of

each blue box is the critical difference reported by the Wilcoxon signed rank test. The critical differences for sub-challenges 1, 2, and 3 are 0.2580, 0.3545, and

0.3856, respectively. Black lines below the boxplots summarize theWilcoxon signed rank test results by dividing the teams into groups. Each group is denoted by

a distinct black line, which contains the teams with no statistically significant difference. The red line displays the rank of an ensemble model constructed from all

models with rank less than or equal to the corresponding point on the x axis.

488 Cell Systems 5, 485–497, November 22, 2017



All three methods employed strategies consistent with suc-

cessful approaches reported in previous DREAM challenges,

including sharing information across response variables (Cost-

ello et al., 2014; Eduati et al., 2015), constructing ensembles of

multiple models (Bilal et al., 2013), selecting features based on

prior information or additional datasets (Costello et al., 2014;

Bilal et al., 2013), and capturing nonlinear input/output relation-

ships (Costello et al., 2014; Eduati et al., 2015) (Discussion).

Sub-challenge 2 Results
The best-performing approach for sub-challenge 2 leveraged

features that are informative across many genes. The motivation

of this approach was that the most correlated features for a spe-

cific gene may be subject to overfitting based on the small sam-

ple size and noise within the experiment (STAR Methods). Thus,

selecting features correlated with multiple response variables

may enrich in features associated with true biological subtypes.

Sub-challenge 2 also yielded a clear interpretation of the best-

performing model, based on a simple biologically motivated

insight: always including one feature corresponding to the

copy-number status of the gene whose essentiality is being pre-

dicted, in addition to nine features selected by statistical criteria.

All 13 teams in sub-challenge 2 used variations of the same

strategy of selecting features based on simple statistical tests

(generally univariate correlation with the response variable),

and applying a regression model to the pre-filtered features,

including most commonly used models, such as linear, ridge,

random forest, Gaussian process, and support vector machine

regression. Interestingly, the fourth ranked team employed

nearly the same strategy as the best-performing team, without

using the hand-selected copy-number feature, which included

selecting features for model inclusion based on their correlation

with the response variable, and applying a simple linear model to

the selected features. The statistically significant improvement of

the best-performing team over the fourth ranked team suggests

that this improvement is attributable to the inclusion of the copy-

number feature. Overall, 8 out of 13 submitted methods outper-

formed a baseline model which selected the top 10 gene expres-

sion features based on Lasso regression on the training dataset.

Sub-challenge 3 Results
The best-performing approach for sub-challenge 3 also employs

the best practices observed in previous DREAM challenges

(Costello et al., 2014; Eduati et al., 2015) of including shared

information across response variables (known as multi-task

learning). Instead of performing feature selection separately for

these related prediction problems, joint modeling approaches

can be used to capture the commonalities between the prob-

lems. The best-performing team’s methodology selects the

list of 100 genomic features iteratively by looking at the predic-

tion performances on all 2,647 genes the teams were asked to

predict (STAR Methods).

Characteristics of Gene Predictability
Although each sub-challenge revealed modeling approaches

leading to statistically significant improvements, the difficulty

of the prediction task (i.e., the gene that was being predicted)

had a much greater effect on prediction accuracy than differ-

ences among modeling approaches (Figure S3). We refer to
the Spearman correlation between predicted and observed es-

sentiality scores for a given model applied to a given gene as

the ‘‘predictability’’ score. We applied a random effects model

to quantify the percent of variance in predictability scores attrib-

utable to differences between prediction tasks versus modeling

approaches (STAR Methods).

For sub-challenges 1, 2, and 3, respectively, 61.65%, 43.62%,

and44.47%of the variance inpredictability scoreswasexplained

by the gene for which relative essentiality was being predicted

(Figures 2A–2C). By contrast, only 10.40%, 4.95%, and 12.16%

of predictability scores were explained by differences in

modeling approaches. Related to this, the predictability of genes

also showedsomecorrelation to the standarddeviation in relative

gene essentiality scores across cell lines (Figures 2D–2F). Genes

with a higher standard deviation in their relative essentiality

scores seem to be better predicted overall, compared with the

average across all teams. This was an even stronger effect for

the best-performing team in each sub-challenge (Figure S4).

Weassessedwhether genes that arewell predicted correspond

to certain biological processes. We ranked all genes by their

average predictability score across models and used gene set

enrichment analysis (GSEA) to calculate the enrichment of each

KEGG and Hallmark gene set in the Molecular Signatures Data-

base (MSigDB) relative to this ranked list (STARMethods) (Subra-

manian et al., 2005). Well-predicted genes fall into gene sets that

represent common biological processes or essential cellular

functions such as DNA replication and repair, or essential cellular

complexes such as the proteasome, spliceosome, or ribosome

(Figures 2G, 2H, S5, and S6; Tables 1 and S5, S6, and S7).

Characteristics of Feature Selection
In addition to assessing how predictable each gene was in a

team’s model, sub-challenges 2 and 3 were also designed to

gain insight into the types and identity of genetic features that

lead to good overall predictions. Teams were asked to construct

predictive models for 2,647 selected genes (STAR Methods)

using at most 10 features per gene (sub-challenge 2) or 100

features common to all genes (sub-challenge 3) from all the

available gene expression, copy number, and mutation data.

All teams used gene expression features almost exclusively;

copy number or mutation features were much less commonly

utilized (Figures 3A and 3B). This implies that gene expression

features encode the most useful information for the prediction

of phenotypic effect of genetic perturbations, consistent with

previous studies on predicting the effect of drug perturbations

in cancer cell lines (Costello et al., 2014; Eduati et al., 2015;

Nikolova et al., 2017; Jang et al., 2014) and predicting survival

in primary tumors (Yuan et al., 2014; Margolin et al., 2013; Nea-

politan and Jiang, 2015).

We performed a controlled experiment to further test the

observation that gene expression data was the most informative

feature type in predictive models. Specifically, for each predic-

tion task in sub-challenge 2, we calculated the test error of a

commonly used regression model (Lasso) trained using each

combination of feature types. All four models that included

gene expression performed significantly better than the models

that contained only mutation or copy-number data alone or in

combination (Figure 3D). The best-performing model utilized

gene expression alone, although models including other feature
Cell Systems 5, 485–497, November 22, 2017 489
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Figure 2. Analysis of Gene Predictability

The proportions of variance explained by ‘‘gene’’ and ‘‘team’’ factors using the random effects model are shown for (A) sub-challenge 1, (B) sub-challenge 2, and

(C) sub-challenge 3. The relationship between the standard deviations of gene essentiality scores and predictability scores (i.e., correlations between predicted

and observed essentiality scores), averaged over all teams, are shown for (D) sub-challenge 1, (E) sub-challenge 2, and (F) sub-challenge 3. (G and H) The

predictability scores of the top 10 gene sets (rows) that are best predicted over all teams and sub-challenges (columns) from (G) ‘‘KEGG’’ gene set collection and

(H) ‘‘Hallmark’’ gene set collection. The score of a gene set for a team and sub-challenge pair is defined as the average predictabilities obtained by this team in this

sub-challenge for the genes involved in this gene set.
types in addition to gene expression had comparable perfor-

mance with the gene-expression-only model. Indeed, in agree-

ment with teams’ submissions, gene expression features were

predominantly selected by all Lasso models that included gene

expression as a feature type (Figure 3C).

We then looked into what gene expression features were

used most commonly by teams in their models. Among the

gene expression data, certain features were chosen more often

across teams (in both sub-challenges) and across genes to be
490 Cell Systems 5, 485–497, November 22, 2017
predicted (in sub-challenge 2). One such feature, EIF2C2 (also

known as AGO2), is a component of the RNAi machinery of the

cell (Liu et al., 2004; Meister et al., 2004; Rand et al., 2004). In

sub-challenge 2, EIF2C2 expression was utilized in multiple

gene models (n = 2–395) by 10 out of the 13 teams. EIF2C2

copy number, or other components of the RNAi machinery

(such as EIF2C1, EIF2C3, EIF2C4, DICER1, etc.) were much

less frequently used. In sub-challenge 3, 7 out of 14 teams

also used EIF2C2 gene expression as one of their 100 predictive



Table 1. Top 10 GSEA Results of Gene Predictability Averaged

over All Teams in each Sub-challenge

Gene Set Name Size

Normalized

Enrichment

Score FDR q Value

Sub-challenge 1

KEGG proteasome 40 1.5332443 0.32170543

KEGG apoptosis 74 1.4924165 0.38147435

KEGG homologous

recombination

25 1.5532851 0.3887445

KEGG renal cell carcinoma 62 1.4211984 0.4181525

KEGG renin angiotensin system 15 1.4481847 0.4225843

KEGG Parkinson’s disease 100 1.4281346 0.44821626

KEGG DNA replication 32 1.4569446 0.4559137

KEGG RNA polymerase 28 1.5906658 0.5116125

KEGG spliceosome 123 1.3328333 0.5146515

KEGG focal adhesion 164 1.3115251 0.5323963

Sub-challenge 2

KEGG proteasome 26 1.7807523 0.028672058

KEGG spliceosome 73 1.5590596 0.3131918

Hallmark adipogenesis 39 1.4641638 0.38694927

Hallmark DNA repair 48 1.406141 0.43439645

Hallmark MYC targets V1 111 1.4734303 0.43642634

KEGG cell cycle 55 1.4341469 0.44051114

HALLMARK E2F targets 75 1.3867909 0.46594828

KEGG nucleotide excision repair 17 1.4118508 0.47002134

KEGG pyrimidine metabolism 20 1.3697011 0.4960722

KEGG Huntington’s disease 60 1.3488446 0.50220245

Sub-challenge 3

KEGG proteasome 26 1.6273592 0.34336427

KEGG oocyte meiosis 39 1.452181 0.3463302

KEGG Huntington’s disease 60 1.4954373 0.38429984

Hallmark DNA repair 48 1.4548242 0.3926697

KEGG apoptosis 29 1.4718503 0.39337313

KEGG oxidative phosphorylation 25 1.4237828 0.4079552

KEGG nucleotide excision repair 17 1.5160906 0.41208157

KEGG Parkinson’s disease 33 1.3633572 0.4446588

KEGG chemokine signaling

pathway

41 1.3515177 0.45927873

KEGG pyrimidine metabolism 20 1.3680565 0.4637498
features. The fact that the expression of this gene is often used in

these predictions implies that information about each cell line’s

RNAi machinery level is informative for overall prediction of rela-

tive gene essentiality data from shRNA screens. This is consis-

tent with the relationship of screen performance with AGO2

expression described in previous reports (Hart et al., 2014).

When the top selected gene features are examined as a group,

from either sub-challenge, GSEA analysis shows enrichment

for both cancer-related and epithelial-mesenchymal transition

gene sets (STAR Methods; Tables 2, S8, and S9). These imply

that the cell state, whether it is more epithelial or mesenchymal,

also encodes information about relative gene essentiality in that

cell line.
We then looked further into the specific gene features used for

some of the best gene predictions in sub-challenge 2, to see

whether a more in-depth examination of a single predicted

gene could be informative. We selected the genes with a predict-

ability score greater than 0.4 for each team and examined the

gene features (Table S10). Looking at these predicted genes,

we noticed that TP53 was well predicted by the top two teams.

Except for a single copy-number feature (TP53 copy number)

chosen by the best-performing team, the rest were gene

expression features, including features chosen by both teams

(SAMM50, MDM2, and RPS27L). Both MDM2 and RPS27L are

in TP53 pathways; MDM2 is regulated by TP53 and targets

tumor suppressor genes for proteasomal degradation, and

RPS27L is a direct p53 inducible target and its degradation re-

quires binding by MDM2. The second best-performing team

picked additional gene expression features that interact with

TP53 (BAX, DDB2) and well predicted the essentiality of MDM2

by picking a similar set of gene expression features.

We also looked at the standard deviations of all gene expres-

sion features together with the standard deviations of gene

expression features that were frequently used in sub-challenges

2 and 3. Figure S7 shows the density plots of these three sets of

gene expression features. While teams picked gene expression

features with both high and low standard deviations, features

with higher standard deviations were preferentially included in

the models.

Features Inferred from Cell Line Screens Predict
Aggressiveness of Primary Tumors
We next assessed whether predictive features inferred from cell

line screens relate to the aggressiveness of primary lung adeno-

carcinoma human tumor samples (given that a large proportion

of cell lines in our panel, 65 out of 149, were lung adenocarci-

nomas). We selected the top 100 frequently selected features

in sub-challenge 2 as the signature and clustered 495 lung

adenocarcinoma patients with available survival data from The

Cancer Genome Atlas (TCGA) into two groups using hierarchical

clustering onmRNAexpression data of this signature (Figure 4A).

We found that this signature separated the patients into two

groups with a significant survival difference (p = 0.0004). To

assess whether this effect was significant, we generated

10,000 random 100 gene signatures from TCGA mRNA expres-

sion and performed the same survival analysis. The signature

derived from cell line predictions achieved better survival classi-

fication than 9,823 of the 10,000 random signatures (p = 0.0177,

Figure 4B). We also generated 10,000 random cluster assign-

ments for our signature and performed the same survival anal-

ysis using these assignments. The signature derived from cell

line predictions achieved better survival classification than

9,998 of the 10,000 random cluster assignments (p = 0.0002,

Figure 4C).

DISCUSSION

High-throughput genomic and functional genomic datasets on

large numbers of tumor samples hold the promise to rapidly

accelerate our ability to systematically characterize the molecu-

lar drivers of carcinogenesis and identify novel therapeutic

targets associatedwith a tumor’s genetic background. However,
Cell Systems 5, 485–497, November 22, 2017 491
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Figure 3. Analysis of the Influence of Different Molecular Feature Types on Model Performance

(A and B) Percentage of feature types (copy number, gene expression, and mutation) used by each team, for (A) sub-challenge 2 and (B) sub-challenge 3.

(C and D) Percentage of feature types (C) and predictive performance (D) by Lasso on sub-challenge 2 using copy number, gene expression, and/or mutation.
unlocking the discovery potential of such highly complex data-

sets will require matching this data explosion with a concurrent

expansion of our collective knowledge related to the relative

strengths of myriad analytic strategies, the interpretation of sta-

tistical findings, and the inherent strengths and limitations of

each dataset in elucidating a biological question.

The traditional publication model impedes the community’s

ability to achieve rapid learning cycles to optimally advance

such collective knowledge in at least twoways. First, any individ-

ual group can only address a fraction of the valuable questions

enabled by such large datasets, and restricting data access until

post-publication inherently precludes all other lines of investiga-

tion, often by a year or more. Second, even after large datasets

are publicly available, the lack of established benchmarks and

standardized assessment criteria can lead to a phenomenon

known as the self-assessment trap in which a multitude of pub-

lications independently claim to achieve superior performance

to other approaches (Norel et al., 2011), yet deriving robust

learnings through meta-analysis of these independent results

is often challenging or uncovers conflicting or irreproducible

results (Venet et al., 2011).

The Broad-DREAM gene essentiality challenge explores an

alternate research methodology in which any researcher is

invited to engage as an active participant in the analysis of a

novel large-scale dataset throughout the course of its genera-

tion. Our study builds on the community challenge paradigm es-

tablished through the DREAM challenges, and represents the

first time that such an open challenge has been tightly coupled

with data generation at this scale. We believe this methodology

demonstrated improvements in both of the inefficiencies refer-

enced above. First, we were able to assess over 3,000 different
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models over a 4-month period, representing a speed and scale

of model evaluation that would be impossible for a single

research group. Second, by establishing pre-defined assess-

ment criteria and blinding participants to the data used for

assessment, we were able to perform unbiased post-hoc anal-

ysis of all model results and derive multiple conclusions that

can inform future studies aiming to interpret high-throughput

shRNA screens. Perhaps more importantly, by following a meth-

odology similar to DREAM challenges and other benchmarking

studies run over the past 9 years, we were able to identify recur-

ring insights related to the best modeling approaches across

many challenges exploring interpretation of diverse biomedical

datasets. Below, we highlight several conclusions with support-

ing evidence from other benchmarking studies.

In multiple previous DREAM challenges, the best-performing

methods intelligently incorporated domain-specific prior knowl-

edge into their algorithm (Costello et al., 2014; Bilal et al., 2013;

Margolin et al., 2013). Three of the five best-performing methods

from our challenge employed this strategy during feature selec-

tion. These strategies include restricting predictive features

to cancer-relevant genes based on previous publications.

Another method restricted feature selection to genes associated

with important pathways, showing high correlation with essenti-

ality across many perturbations, having expression levels corre-

lated with copy number, and having high expression levels

across cell lines. One team employed the simple insight that

the copy-number status of a given gene is likely predictive of

preferential essentiality when the same gene is targeted by

shRNAs. This performed better than another team’s similar

method that lacked adding the copy-number status to their

model. Although the influence of copy number on relative gene



Table 2. Top 10 Gene Sets by GSEA Analysis of Features

Commonly Chosen from Sub-challenges 2 and 3 Using

‘‘Hallmark’’ and ‘‘KEGG’’ Gene Sets

Gene Set Name FDR q Value

Sub-challenge 2

Hallmark epithelial-mesenchymal transition 3.28 3 10�56

Hallmark TNF-a signaling via NF-kB 2.46 3 10�37

KEGG pathways in cancer 3.88 3 10�33

Hallmark UV response DN 1.09 3 10�29

Hallmark estrogen response late 1.09 3 10�29

KEGG focal adhesion 1.10 3 10�28

Hallmark IL-2 STAT5 signaling 5.43 3 10�27

Hallmark estrogen response early 3.56 3 10�26

Hallmark interferon gamma response 3.56 3 10�26

Hallmark apoptosis 1.89 3 10�24

Sub-challenge 3

Hallmark epithelial-mesenchymal transition 1.24 3 10�29

Hallmark estrogen response late 9.78 3 10�10

Hallmark hypoxia 9.78 3 10�10

Hallmark TNF-a signaling via NF-kB 1.28 3 10�7

Hallmark IL-2 STAT5 signaling 1.25 3 10�5

Hallmark coagulation 5.52 3 10�5

Hallmark apical junction 6.91 3 10�5

Hallmark estrogen response early 6.91 3 10�5

KEGG focal adhesion 6.91 3 10�5

KEGG cytokine-cytokine receptor

interaction

8.56 3 10�5
essentiality measures may be complex, this probably captured

specific gene classes where the copy number (and by proxy,

in some cases, the gene expression) of the gene itself is the

best predictor of its own preferential gene essentiality. Genes

where the amplification or overexpression of the gene leads

to an ‘‘addiction’’ to that gene would be predicted by using

gene expression or copy-number information of that gene.

Conversely, cell lines with homozygous deletions in a given

gene should not respond to targeting the deleted gene. Another

specific copy-number-driven class are CYCLOPS genes, where

deletion of one copy of the gene can lead to an increased

dependency on that gene upon RNAi knockdown (Nijhawan

et al., 2012).

Another finding from previous DREAM challenges is that for

prediction problems containing multiple response variables

for the same set of samples (e.g., phenotype measurements

for multiple perturbations), the best-performing methods

often build predictors that share information across response

variables, rather than build independent models for each

prediction task (Costello et al., 2014; Eduati et al., 2015). This

strategy may reduce noise inherent in each response measure-

ment by amplifying response patterns that are shared across

multiple perturbations that affect similar cellular processes

(Gönen and Margolin, 2014a; 2014b). Both the top-performing

method in sub-challenge 1 and the top-performing method in

sub-challenge 3 utilized this strategy, known as multi-task

learning.
Taken together, all five of the top-performing methods either

incorporated domain-specific prior knowledge or employed

multitask learning. The common theme of all approaches is to

leverage additional information beyond the data provided for a

given prediction task (e.g., feature matrix and response vector).

Such approaches may increase the statistical power of an infer-

ence problem by effectively increasing the sample size through

incorporation of additional information. This interpretation would

be consistent with multiple previous studies arguing that the size

of a dataset trumps differences in analytic approaches in influ-

encing model accuracy (Halevy et al., 2009).

Perhaps the most consistent finding from previous DREAM

challenges is that ensemble modeling robustly achieves perfor-

mance on par with the best individual modeling approaches

(Boutros et al., 2014). Both the best- and second best-perform-

ing teams in sub-challenge 1 employed this insight and utilized

ensemble approaches in their algorithms. More generally, an

ensemble model constructed from all submissions in sub-chal-

lenge 1 achieved a virtually identical score to the best-perform-

ing model (as noted in the main text, ensemble models for

sub-challenges 2 and 3 outperformed all submitted models for

these challenges, although we caution against over-interpreting

this result).

Gene expression features were most frequently used in pre-

dictions from the methods of all the challenge participants in

sub-challenges 2 and 3. Although expression data could be

most familiar to participants and therefore used most often,

a baseline method also performed best when expression data

was used in a controlled experiment. In addition, this has

been seen in other studies, including other DREAM challenges

(Costello et al., 2014; Eduati et al., 2015; Margolin et al., 2013;

Neapolitan and Jiang, 2015). Mutation data, although attractive

as predictive or clinical biomarkers, seem to be limited in their

use in predicting gene essentialities across large numbers of

genes and were rarely used in this challenge. The mutation

data provided, in addition to being sparse (for both genes and

cell lines) likely has an additional impediment to its use. Not

all mutations are equivalent and both biological knowledge

and validation are needed to determine the functional conse-

quences of each genetic change, something not readily avail-

able for most mutations. It is likely that gene expression mea-

sures the cancer cell state to some extent, and therefore, on

average across all genes, it is a better predictor of relative

gene essentiality quantified by RNAi knockdown. Consistent

with this hypothesis, the most common gene expression fea-

tures across all genes and teams, taken as a group, are en-

riched for cancer-related signaling pathways and epithelial-

mesenchymal transition genes. These imply that large differ-

ences in cell state, such as whether it is more epithelial or

mesenchymal, or whether a particular signaling pathway is up-

regulated, encode information about the overall gene essential-

ity in that cell line.

One of the most common single expression features chosen

was EIF2C2 (AGO2), a component of the RNAi machinery,

which likely has an overall impact on the range of gene

knockdown possible in each cell line (Hart et al., 2014). This

implies that some predictive features may pick up signals

specific to the RNAi assay, and should be interpreted with

caution when extending such biomarker/gene essentiality
Cell Systems 5, 485–497, November 22, 2017 493
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Figure 4. Survival Analysis on TCGA Lung Adenocarcinoma Cohort Using the Predictive Signature Obtained from Sub-challenge 2

Submissions

(A) Kaplan-Meier curve for two groups obtained using hierarchical clustering on mRNA expression data of signature genes.

(B and C) Distribution of Kaplan-Meier p values of null distribution models. Bootstrapping results over 10,000 randomly generated 100 gene signatures (B).

Bootstrapping results over 10,000 randomly generated clustering labels (C). The x axis positions of the dots in (B) and (C) show the p-value obtained by the

predictive signature extracted from the challenge submissions, whereas the numbers above them show the p-value of the improvement of this model compared

to the bootstrapped models.
relationships to other means of inhibiting the target gene (e.g.,

pharmacologic).

Survival analysis of TCGA lung adenocarcinoma data also

suggests that the gene expression features commonly utilized

in the challenge contain information relevant to primary tumors.

These might be genes most likely involved in tumor pathogen-

esis and therefore also related to poor survival. Lung adenocar-

cinomawas the only tumor type where a post-bootstrapping sig-

nificant survival difference was found after those expression

features were used to split samples into two groups. Themajority

of cell lines in the challenge dataset were non-small-cell lung

cancers, so this may indicate that a specific lung cancer disease

state which correlates with survival is captured by these com-

mon expression features.
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Taken together, the conclusions listed above, supported by

previous publications, yield a principled set of recommendations

for the interpretation of shRNA screens. Overall, baseline genetic

data contains some predictive value for most shRNA perturba-

tions, with the essentiality of some genes far more predictable

than others. Gene expression data should be used as key fea-

tures in a predictive model. The specifics of a modeling

approach have less impact on performance than the factors

listed above, although improved performance can be obtained

by sharing information across prediction tasks, incorporating

relevant external data, or intelligently utilizing domain-specific

knowledge in the model specification. Finally, constructing an

ensemble of models developed by many different groups is a

robust strategy for achieving predictive accuracy on par with



the best individual modeling approach. We hope that the conclu-

sions derived from this community challenge, together with the

associated dataset and benchmarking resource, will contribute

a meaningful brick upon which future studies can build to pro-

gressively enhance the growing edifice of knowledge related to

interpreting high-throughput genetic screens.
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keby, Elana J. Fertig, Emanuel Gonçalves, Mehmet Gönen, Pinghua Gong,

Peddinti Gopalacharyulu, Kiley Graim, Yuanfang Guan, Christoph Hafemeis-

ter, William C. Hahn, Lenwood Heath, Bruce Hoff, Sara Howell, Alok Jaiswal,

Masayuki Karasuyama, Samuel Kaski, qukasz Kędziorski, Suleiman A. Khan,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

This information can be obtained from Tsherniak et al. (2017).

METHOD DETAILS

Challenge Data
RNAi screening data from Project Achilles represents a large-scale loss-of-function screen involving �98,000 shRNA reagents, tar-

geting�17K genes, lentivirally delivered in a pooled format to each cancer cell line in replicate (n = 3 or 4), in parallel (Tsherniak et al.,

2017). This data was provided for a total of 149 cancer cell lines throughout the challenge, and went through quality control and pro-

cessing as described in detail previously (Cowley et al., 2014). In brief, normalized log2 read counts were compared to the initial DNA

plasmid pool to calculate a log2 fold change score per shRNA per replicate cell line sample, then quantile normalized across cell lines.

The DEMETER algorithm was used to calculate relative gene essentiality data, which are mean centered per gene and divided

by the global standard deviation of the data set (Tsherniak et al., 2017). Given the observed phenotypic effects produced by RNAi

reagents which share genes and seed regions, DEMETER fits an additive model combining contributions from the targeted gene

as well as contributions from seed effects. Two seeds per shRNA were considered, where the seeds are defined by the sequence

in the regions 11-17 nt and 12-18 nt. A reagent may have multiple gene effects, as determined by aligning the shRNA. Any shRNAs

which targeted more than ten genes were omitted from the fitting process. In addition, any seed or gene with fewer than two obser-

vations were also omitted and not fit by this process.

Molecular feature data from these 149 cell lines (genome-wide gene expression and copy number data, in addition to mutational

profiling of 1,651 genes) from the Cancer Cell Line Encyclopedia (Barretina et al., 2012) was downloaded from the CCLE portal

(https://portals.broadinstitute.org/ccle/home).

All data used for the challenge including relative gene essentiality data, molecular features, and cell line annotations are available

through Synapse under ID syn2384331 after registering to the system and joining to the challenge.

Gene Lists for Sub-challenges 2 and 3
A shorter list of genes was created for sub-challenges 2 and 3. Criteria 1 was to look for very high-quality DEMETER gene solutions

and those gene solutions that had an outlier profile. High quality gene solutions required the third best shRNA for each gene to have a

gene solution R2 of >30%,meaning that the third best shRNA has to have at least 30%of its effects explained by the gene (rather than

the off-target seed sequence). Outlier DEMETER profiles were defined as those genes where a small subset of cell lines (50 > n > 3)

showed a strong relative essentiality (absolute values of DEMETER gene score > 1.5), but themajority of cell lines showed little effect.
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The second criteria filtered the gene list based on known genomic alterations of human tumors, based on the presence of genes on

lists for either the Cancer Gene Census (Futreal et al., 2004) or the pan-cancer mutation analysis from TCGA projects (Ciriello et al.,

2013). The third criteria filtered based on the ‘druggability’ of genes by incorporating information from two publications/databases of

genes that are or have potential to be drug targets (Basu et al., 2013; Patel et al., 2013).

QUANTIFICATION AND STATISTICAL ANALYSIS

Best Performing Methods for Sub-challenge 1
The underlying regression algorithm of the best performing approach for sub-challenge 1 was kernel ridge regression (KRR) (Schöl-

kopf and Smola, 2001; Shawe-Taylor andCristianini, 2004).Multiple KRRmodels were trained on different representations, which are

estimated by kernel canonical correlation analysis (KCCA) (Lai and Fyfe, 2000; Akaho, 2001) or kernel target alignment (KTA) (Cris-

tianini et al., 2001) using both input and output data. KCCA is a kernel-based extension of standard CCA, which extracts maximally

correlated subspaces from two different representations, namely genomic data and gene essentiality scores. KTA approximates an

‘‘ideal’’ kernel function, which can be used to predict a target variable perfectly. The ideal kernel function between cell lines is defined

on gene essentiality scores of the training data set cell lines. In both KCCA and KTA, Gaussian kernel (GK) was used for input data,

whereas bothGaussian kernel and linear kernel (LK) were used for outputs. Therewere two choices of kernel functions for output data

and two ways of learning representations (KCCA or KTA), which resulted in four KRR models. The final prediction was the average

over the outputs of the four models, and this averaging can alleviate instability, which can be caused by the small sample size. The

baselinemodel, i.e., KRRwithout representation learning component, achieved 0.2255 average correlation score for the final test set.

The average correlation score of the four different representation learning methods was 0.2325, whereas KTA + LK, KTA + GK,

KCCA + LK, and KCCA + GK were 0.2321, 0.2301, 0.2188, and 0.2321, respectively. Representation learning provided significantly

better performance than the baseline KRR, except KCCA + LK, and the final averaged model outperformed all other models accord-

ing to the Wilcoxon signed rank test (p < 0.01).

The second best performing team started with feature selection on gene expression and copy number data using variance filters

and restricting to genes of established cancer importance from a recent PanCancer study (Ciriello et al., 2013). The random forest

(RF) predictor used the selected gene-level features directly whereas the multiple kernel learning (MKL) predictor transformed the

original training features into kernel pathways represented by sets of genes each taken from a specific genetic pathway. The final

gene essentiality predictions were computed by averaging the outputs of the MKL and RF models. The ensemble achieved better

performance (0.2321 average correlation score) than either of the individual RF (0.2190) or MKL (0.2293) predictors, suggesting

each approach captured sufficiently distinct biological information about the problem. Using gene expression and copy number fea-

tures together provided improved prediction performance over either data type alone. In addition, the use of a larger collection of

pathways in the MKL predictor led to an improvement in accuracy – pathway kernels were derived from three Molecular Signatures

Database (MSigDB) collections (Subramanian et al., 2005) (canonical pathways, C2_CP, 1320 gene sets; chemical and genetic

perturbations, C2_CGP, 3402 gene sets; and GO, C5_GO, 1454 gene sets (Ashburner et al., 2000)) in our final ensemble predictor

improved performance over using the C2_CP collection alone (MKL: 0.2098, ensemble: 0.2220) or C2_CP in combination with

C5_GO (MKL: 0.2192, ensemble: 0.2284).

Feature selection criteria usedby the thirdbest performing team include: (i) genes that have highoverall expression levels across cell

lines; (ii) mutations in genes associated with important cellular pathways; (iii) features that have high correlation with gene essentiality

score of each gene or all the genes in general; (iv) genes whose expression levels have high correlation with corresponding copy

numbers. These criteria were combined to select features with cutoffs chosen by cross validation. According to cross-validation

and two other guiding principles listed below, a vector of scaling factors was determined to scale the feature matrix. The two guiding

principles are: (i) features that have higher correlation with gene essentiality scores within the training set should have smaller scaling

factor; (ii) geneswith higher general expression level across all cell lines should have smaller scaling factor. Then, principal component

analysis was carried out to reduce the number of features. Finally, Gaussian process for regression was used to predict gene essen-

tiality, where a radial basis function kernel on the principal component matrix was used to represent the similarity between cell lines.

Best Performing Method for Sub-challenge 2
The best performing approach for sub-challenge 2 used the following three-step procedure to perform feature selection on expression

data for each predicted gene. (i) They first ranked all expression features using the magnitude of correlation between gene essentiality

values and expression levels for all predicted genes. This ranking was denoted by R1. (ii) They then ranked all expression features using

their selection frequencies in the top 50 features in the first step. This ranking was denoted by R2. (iii) They then combined these two

rankingsR1andR2tofindaunified rankingwithweights0.7and0.3, respectively;R=0.7R1+0.3R2.Thefirstnine featureswereselected

thisway.The tenth featurewas thecopynumbervalueof thesamegene forwhichessentialitywasbeingpredicted.Thiswasbasedon the

rationale that gene essentiality would heavily be influenced by the dosage (copy number) of that gene existing in the cell line system.

Finally, for each gene being predicted, a linear support vector machine was trained using the corresponding ten features.

Best Performing Method for Sub-challenge 3
The best performing approach for sub-challenge 3 applied a greedy regularized least squares (RLS) model (Pahikkala et al., 2012) to

solve the prediction task as amultilabel learning problem.Multitarget greedy regularized least-squares (MT-GRLS) (Naula et al., 2014)
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is a wrapper-based learning algorithm that constructs multilabel ridge regression model based on a given budget restriction on the

number of common features to be selected. The method performs stepwise greedy forward selection by adding at each step the

feature whose addition leads to the largest increase in leave-one-out cross-validation performance over all the target genes. The al-

gorithm is highly scalable having a linear time training complexity, and it directly optimizes the predictive performance of the learned

model subject to the budget constraints, making it ideal for this sub-challenge. An open-source implementation of the method is

available in the RLScore software library at https://github.com/aatapa/RLScore. The best performing team evaluated the perfor-

mance of MT-GRLSmodel internally using a nested-cross validation (CV) approach. They first applied the model over a range of reg-

ularization parameters with seven-fold inner CV to select the most predictive regularization parameter. Then, the predictive accuracy

of themodel was evaluated using a three-fold outer CV loop. The nestedCV provided an accurate estimate of the prediction accuracy

on the independent test set. The final prediction model was based on the best regularization parameter learned from the complete

training data set using seven-fold CV. The prediction performance of the MT-GRLS did not benefit from any prior filtering of the fea-

tures, probably due to its efficient feature selection procedure.

Percent of Variation Analysis
To see the effect of different factors on the prediction performance, we used ‘‘random effects model’’ on the prediction results of all

three sub-challenges. The two factors we tested were ‘‘gene’’ factor and ‘‘team’’ (or ‘‘method’’) factor. For each sub-challenge, we

used the correlation scores calculated on each gene for each team as the dependent variables, and the gene predicted and the team

were the independent variables.We fit the random effects model using the lme4R package (Bates et al., 2015). After fitting themodel,

we calculated the proportion of variance explained for each factor together with residual variance.

GSEA/MSigDB Overlap Analyses
GSEA (Gene Set Enrichment Analysis) and MSigDB overlap analyses using a hypergeometric distribution were performed using

‘‘Hallmark’’ (Subramanian et al., 2005; Liberzon et al., 2015) and ‘‘KEGG’’ gene sets (Kanehisa and Goto, 2000; Kanehisa et al.,

2014). GSEA analyses of gene predictability scores used average correlation scores of each gene over all teams to rank genes

and performed enrichment analysis using this pre-ranked list of genes. MSigDB overlap analyses of commonly chosen features

used genes chosen by teams at least 25 times in sub-challenge 2, and by at least 2 teams in sub-challenge 3. The FDRs for MSigDB

overlap analyses listed are the false discovery rate analog of hypergeometric p-value after correction for multiple hypothesis testing

according to Benjamini and Hochberg.

Baseline Lasso Regression Method
To establish a baseline performance for sub-challenge 2, we used the Lasso algorithm from the glmnet R package (Friedman et al.,

2010). We restricted the Lasso algorithm to use at most ten features for each gene predicted in line with the sub-challenge 2 settings.

We tried two different scenarios: (i) considering all training cell lines (105 in total) and (ii) considering cell lines with available mutation

data (83 in total). For the first scenario, we trained copy number or gene expression onlymodels together with jointmodel. For the sec-

ondscenario,we trained single sourcemodels aswell asmodel for pairs of data sources and fullmodel that usesall threedata sources.

TCGA Survival Analysis
We picked the top 100 frequently selected features in sub-challenge 2 as the predictive signature of cell viability. We downloaded

mRNA expression data of TCGA lung adenocarcinoma patients with available survival data (Cancer Genome Atlas Research

Network, 2014), which results in a data set of 495 samples. We found that 95 out of these 100 predictive genes were reported in

TCGA gene expression assay. We clustered these 495 patients into two groups using hierarchical clustering with Ward’s minimum

variance method on mRNA expression data of these 95 genes. We calculated the Kaplan-Meier survival curve using this clustering

result and then find the corresponding p-value using the survival R package (Therneau andGrambsch, 2000). To assess the statistical

significance of the results, we performed two different bootstrapping simulations:

1. We picked 10,000 random signatures of size 95 by selecting 95 genes out of 20,531 available in the TCGA cohort. We run the

same clustering analysis on each signature and calculated the corresponding p-values. We then counted the number random

signatures with better p-values than the predictive signature extracted from the challenge submissions.

2. We randomly shuffled the clustering labels obtained from the predictive signature extracted from the challenge submissions

10,000 times. We calculated the p-value from the Kaplan-Meier curve for each random labeling. We then count the random

labels with better p-values than the labels obtained from the predictive signature extracted from the challenge submissions.
DATA AND SOFTWARE AVAILABILITY

All data used in this challenge was previously unpublished and are made available together with information about the data gener-

ation, challenge details, leaderboards, and source codes used to generate the results reported here at https://www.synapse.org/

Broad_DREAM_Gene_Essentiality_Prediction_Challenge.
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