
Single cell lineage reconstruction using
distance‑based algorithms and the R package,
DCLEAR
Wuming Gong1, Hyunwoo J. Kim2, Daniel J. Garry1 and Il‑Youp Kwak3*

Background
A multicellular organism or animal develops from one to two to four to an exponential
number of cells. One of the challenges is the ability to predict the lineage tree repre-
senting the cell differentiation process starting from the single parental cell, based on
cells extracted from the adult body. McKenna et al. [1] used gene editing technology and
the immune system (CRISPR-CAS9) as the basis for proposing a methodology called
GESTALT for estimating a cell-level lineage tree using the data generated using CRISPR-
CAS9 barcode edits from each cell. Subsequently, Raj et al. [2] proposed scGESTALT,
which further considers cell type identification as an extension of GESTALT. Research-
ers have developed a number of additional CRISPR recorder-based technologies [3–5].

Abstract

Background: DCLEAR is an R package used for single cell lineage reconstruction. The
advances of CRISPR‑based gene editing technologies have enabled the prediction of
cell lineage trees based on observed edited barcodes from each cell. However, the
performance of existing reconstruction methods of cell lineage trees was not accessed
until recently. In response to this problem, the Allen Institute hosted the Cell Lineage
Reconstruction Dream Challenge in 2020 to crowdsource relevant knowledge from
across the world. Our team won sub‑challenges 2 and 3 in the challenge competition.

Results: The DCLEAR package contained the R codes, which was submitted in
response to sub‑challenges 2 and 3. Our method consists of two steps: (1) distance
matrix estimation and (2) the tree reconstruction from the distance matrix. We pro‑
posed two novel methods for distance matrix estimation as outlined in the DCLEAR
package. Using our method, we find that two of the more sophisticated distance
methods display a substantially improved level of performance compared to the tradi‑
tional Hamming distance method. DCLEAR is open source and freely available from R
CRAN and from under the GNU General Public License, version 3.

Conclusions: DCLEAR is a powerful resource for single cell lineage reconstruction.

Keywords: Cell lineage tracing, Lineage reconstruction, Machine learning, Simulation

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Gong et al. BMC Bioinformatics (2022) 23:103
https://doi.org/10.1186/s12859‑022‑04633‑x BMC Bioinformatics

*Correspondence:
ikwak2@cau.ac.kr
3 Department of Applied
Statistics, Chung‑Ang
University, Seoul, Republic
of Korea
Full list of author information
is available at the end of the
article

Page 2 of 14Gong et al. BMC Bioinformatics (2022) 23:103

This field lacked experimentation or analyses regarding the effectiveness of these
proposed algorithms for comprehensive evaluation. To improve the evaluation pro-
cess, the Allen Institute established The Cell Lineage Reconstruction DREAM Chal-
lenge [6]. The Allen Institute proposed three different sub-challenges to benchmark
reconstruction algorithms of cell lineage trees: (1) the reconstruction of in vitro cell
lineages of 76 trees with fewer than 100 cells; (2) the reconstruction of an in silico
cell lineage tree of 1000 cells; (3) the reconstruction of an in silico cell lineage tree of
10,000 cells. Our proposed DCLEAR method won sub-challenges 2 and 3 of this chal-
lenge competition.

We outline and define the problem setting addressed in cell lineage reconstruction
in the next section. We then present two core methods for distance matrix construc-
tion and outline how DCLEAR software may be applied to a simulated dataset.

Implementation
Problem setup

Assume we have n number of training data pairs. Each data pair consists of a set of cell
sequences and a true cell lineage tree. One example of such a pair is illustrated in Fig. 1.

For the ith data pair, let mi be the number of cell sequences in the ith data pair and
let t be the sequence length. Let the sequence information in data pair i be written as
Ci , an mi × t matrix. The matrix element Ci

jk describes the jth sequence and the kth
letter of the ith training data pair. Furthermore, we represent Li , the cell lineage tree
structure, in the form of a Newick format string.

For example, if Fig. 1 represents ith data pair, (a) shows the sequence information.
It has mi = 4 cell sequences, each sequence length has a length (t) of 10, and the first
letter of the 3rd sequence is Ci

3,1 = E . The cell lineage tree is shown in Fig. 1b. In
Newick format, Li = ((1 : 0.5, 2 : 0.5) : 2, (3 : 1.2, 4 : 1) : 2).

We built our model (m(C; θ̂)) with n training pairs. The input matrix, C is an mi × t
sequence information matrix. The output is the Newick format string representing
the tree structure while θ represents the parameter set related to model m(C; θ) , and
θ̂ represents the estimated parameter with n training data pairs.

To evaluate the model, we have l number of unused data. The loss is indicated as
L(m(Ci; θ̂), Li) . The loss increases when the predicted tree structure (m(C; θ̂)) differs
from the true tree structure (Li). We use the averaged loss metric (AL) defined below
to evaluate the model m(C; θ̂).

Fig. 1 a is the observed set of cell sequences, and b is the cell lineage tree. The goal is to predict the cell
lineage tree in (b) using the cell sequences in (a)

Page 3 of 14Gong et al. BMC Bioinformatics (2022) 23:103

Next, we need to define the quantity L(L1, L2) that represents the dissimilarity between
the two lineage trees, L1 and L2 . The two widely used measures of this dissimilarity are
the Robinson–Foulds (RF) distance [7] and the Triplet distance [8].

Figure 2 represents two lineage trees, L1 and L2 . The possible separations for tree 1 are
{1, 2}, {3, 4, 5} and {1, 2, 5}, {3, 4} , and the possible separations for tree 2 are {1, 2}, {3, 4, 5}
and {1, 2, 3}, {4, 5} . Among the four possible separations, {1, 2}, {3, 4, 5} in tree 1 and tree
2 are concordant separations. The RF distance is defined as the total number of concord-
ant separations divided by the total number of separations. As an example: the RF score
for Figure 2 is 2/4 = 0.5.

For triplet distance calculations, we sample three items among all items in the
tree. We determine 5C3 = 10 possible cases. We check whether the tree structure
of the three items in tree 1 and tree 2 are the same. For example, the five cases of
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 4, 5} and {2, 4, 5} have the same tree structure in both tree 1
and tree 2. The triplet score is defined as the number of cases with the same tree struc-
ture divided by the number of possible cases. Accordingly, the triplet score for our exam-
ple is 5/10 = 0.5.

We will use ALRF to denote the RF distance and ALTP to denote the triplet distance.

Overview of the modeling architecture

The two main issues that need to be answered in the lineage reconstruction problem
are (1) how should the model m(C; θ) be built and (2) how should θ̂ be estimated? Our
modeling architecture for m(C; θ) is described in Fig. 3. We divide the model into two
parts: (1) estimating the distance between cells and (2) constructing a tree using a dis-
tance matrix. Let D(C) be a function for estimating the distance matrix for an m× t
input sequence matrix, C, and let t(D) be a function for predicting the lineage tree for
an m×m distance matrix, D. Note that a knowledge of the triangular components in D
is sufficient for defining the distance matrix. Subsequently, the challenge becomes how
D(·) and t(·) should be defined.

Choice of distance

One notion for calculating the distance is to define the distance function for the two
sequences. Let d(Ci·,Cj·; θ) = dij be the calculated distance between the ith cell

(1)AL =

∑l
i=1 L(m(Ci; θ̂), Li)

l
.

Fig. 2 Two different trees, a L1 and b L2 , are presented to explain how the RF and triplet distances are defined.
There are two possible cuts for each tree to separate items in the tree with two different sets of more than
two items. The red slanted lines represent the possible cuts for separation

Page 4 of 14Gong et al. BMC Bioinformatics (2022) 23:103

and the jth cell obtained from the given cell information matrix C. The quantities
Ci·, i = 1, · · · ,m represent the ith cell vector taken from C. The quantity dij is the (i, j)th
element of the cell distance matrix D. The next challenge becomes how d(·, ·) should be
defined.

Hamming distance method

One naive approach to modeling d(·, ·) is to compute the Hamming distance expressed
in equation (2):

where 1(condition) is an indicator function with a value of 1 if the given condition is true
and 0 otherwise. Note that the Hamming distance dH (Ci·,Cj·) simply counts unit differ-
ences between the two sequences Ci· and Cj·.

The simple calculation of the Hamming distance does not meet the challenges of the
present study. Consider the cell differentiation process illustrated in Fig. 4. Let the 2nd
and the 3rd leaf cells (dotted) have C2· = 0AB-0 and C3· = 00CB0 . The corresponding
Hamming distance is dH (C2·,C3·) = 3 . However, it is not reasonable to assign equal

(2)dH (Ci·,Cj·) =

t∑

l=1

1(Cil �= Cjl),

Fig. 3 Overview of our modeling architecture. Our model function m(C; θ) is divided into two parts: (1)
estimating the distance between cells and (2) constructing a tree using the distance matrix

Fig. 4 Example of cell differentiation process

Page 5 of 14Gong et al. BMC Bioinformatics (2022) 23:103

weights to each target position. This deficiency is addressed by the weighted Hamming
approach described in the following sub-sub-section.

The code for using the Hamming distance method is available from the phangorn
package [9] using the dist.hamming function.

Weighted Hamming distance (WHD) method

An example of the cell diffusion process is illustrated in Fig. 4. Consider the objective of
reconstructing the lineage tree based on information about the leaf nodes. What would
be an appropriate measure for calculating the distance between 0AB-0 and 00CB0 (see
the dotted circles in Fig. 4)? The character difference between ‘A’ and ‘0’ would be less
than the character difference between ‘B’ and ‘C’ as the initial state ‘0’ can be differ-
entiated to ‘A’ or to any other outcome states, whereas states ‘B’ and ‘C’ cannot be dif-
ferentiated to other outcome states. In addition, the missing state ’-’ maybe any other
state. Seeking a mathematical formula to accommodate these nuances, we propose the
weighted Hamming distance (WHD) method:

where, Cil is the lth character in the ith cell sequence, and wCil
 is a weight associated with

the character Cil . The code for calculating the WHD method is available as the dist_
weighted_hamming function in the DCLEAR package. For the estimation of weight
parameters, we used Bayesian hyperparameter optimization using the BayesianOp-
timization function in the rBayesianOptimization package [10].

k‑mer replacement distance (KRD) method

The algorithm used to compute the k-mer replacement distance (KRD) method first uses
the prominence of mutations in the character arrays to estimate the summary statistics
used for the generation of the tree to be reconstructed. These statistics include the muta-
tion rate, the mutation probability for each character in the array, the number of targets,
and the number of cells. These estimated parameters were combined with pre-defined
parameters, such as the number of cell divisions, to simulate multiple lineage trees start-
ing from the non-mutated root. To generate trees with sizes and mutation distributions
similar to the target tree, we generated 1000 lineage trees, each with 16 cell divisions of
216 leaves, a mutation rate of 0.1, arrays of 200 characters, 200 cells, and 30 states (‘A’-
‘Z’ to ‘a’-‘c’, with an outcome probability following a Gamma distribution with a shape of
0.1 and a rate of 2). Different possibilities for the k-mer distance method were then esti-
mated from the simulated lineage trees and used to compute the distances between the
input sequences in the character arrays of internal nodes and tips. The KRD method is
available from the DCLEAR package using the dist_replacement function.

Tree construction

We use existing methods such as Neighbor-Joining (NJ), UPGMA, and FastMe [11–13]
for tree construction from the estimated distance matrix, D. The NJ method is imple-
mented as the nj function in the Analysis of Phylogenetics and Evolution (ape) package,

(3)dWH1(Ci·,Cj·) =

t∑

l=1

wCil
wCjl

1(Cil �= Cjl),

Page 6 of 14Gong et al. BMC Bioinformatics (2022) 23:103

UPGMA is implemented as the upgma function in the phangorn package, and FastMe is
implemented as fastme.bal, and fastme.ols in the ape package.

Results
This section reports the experimental results of applying the Hamming distance, WHD,
and KRD methods using existing tree construction methods (NJ, UPGMA, and FastMe).
For the use of NJ, UPGMA, and FastMe, the nj function in the ape package [14] was
used for the NJ method, the upgma function in the phangorn package [9] was used for
the UPGMA method, the fastme.ols function in the ape was used for the FastMe
method, and the fastme.bal function in the ape was used for FastMe with tree
rearrangement.

Datasets

Simulation dataset

The simulation dataset was generated from our simulation code. Parameter settings for
the simulation were as follows:

1. Number of targets: 50, 100, and 200
2. Mutation probability: 0.02, 0.04, 0.06, 0.08, and 0.1
3. Number of cells: 100
4. Dropout probability: 0, 0.05, and 0.1
5. Number of cell division: 16
6. Existance of point deletion: True, False

We iterated all 90 combinations (3× 5× 3× 2) of the parameter 5 times, result in 450
simulation datasets. For each iteration, We generated five training sets and one evalua-
tion set. The averaged performance of the 450 evaluation sets was reported.

Sub‑challenge 2 and 3 datasets

The sub-challenge 2 and 3 datasets can be downloaded from the competition website
of the Allen Institute Cell Lineage Reconstruction Challenge at https:// www. synap se.
org/# !Synap se: syn20 692755 (accessed on 17 September 2021). The sub-challenge 2 data-
set (the dataset for C.elegans cells) contained a 1000 cell tree from the 200 mutated/
non-mutated targets in each cell induced by simulation, and the sub-challenge 3 dataset
(the dataset for mouse cells) had a 10,000 cell tree from the 1000 mutated/non-mutated
targets in each cell induced by simulation. The different simulation models were used
for sub-challenges 2 and 3. Both datasets had 100 trees. We randomly divided the sub-
challenge dataset into 75 trees for training and 25 trees for evaluation.

Experimental results

We outlined our experimental results in Fig. 5. The y-axis represented the RF distance,
and the x-axis accommodated the different models. The Hamming distance, the KRD,
and the WHD methods were used for distance calculation. NJ, UPGMA, and FastMe
were methods for tree construction. For all three datasets, the KRD and the WHD meth-
ods displayed improved performance compared to the Hamming distance method. The

https://www.synapse.org/#%21Synapse:syn20692755
https://www.synapse.org/#%21Synapse:syn20692755

Page 7 of 14Gong et al. BMC Bioinformatics (2022) 23:103

performance achieved with the KRD was similar to that achieved with WHD. Among
the tree construction methods, FastMe with tree rearrangement displayed improved
performance compared to the other tree construction methods.

Discussion
In these experiments, we only compared the Hamming distance, the WHD, and the KRD
methods using the three datasets. Gong et al. [6] presented the comparison of the WHD
and the KRD with the other methods that participated in the Cell Lineage Reconstruc-
tion Dream Challenge (2020). Our proposed WHD method was used for sub-challenge
3, and the KRD method was used for sub-challenge 2. DCLEAR won both sub-chal-
lenges 2 and 3 but did not participate in sub-challenge 1. The sub-challenge 1 dataset has
only ten target positions with two outcome states. The WHD and KRD methods were
more powerful techniques with more complex settings, such as the existence of a drop-
out interval, the existence of missing target positions, and a larger number of outcome
states. With the small target positions and the small outcome states of sub-challenge 1,
the gain achieved by using the WHD and the KRD methods was not high. We were not
able to show a comparison for sub-challenge 1 as DCLEAR did not participate in that
sub-challenge. Thus, the future work of DCLEAR will contain an extension of the WHD
and the KRD methods with small target and small outcome settings. Furthermore, for
the WHD method, the hyperparameter tuning was performed using BayesianOptimiza-
tion because the loss was not differentiable with respect to weight parameters. We could
utilize the surrogate loss to address this non-differentiable loss [15].

Conclusions
DCLEAR is a powerful resource for single cell lineage reconstruction.

Appendix
Simulating trees with barcodes

For a simple illustration of lineage reconstruction, we simulated data using the sim_
seqdata function in the DCLEAR package coded using the R [16] language. The sim_n
parameter represented the number of cell samples. The prob_state parameter rep-
resented the cell state probability. The parameter m represented the number of targets.

Fig. 5 Experimental result

Page 8 of 14Gong et al. BMC Bioinformatics (2022) 23:103

The parameter n_s represented the number of outcome states which equals the length
quantified by prob_state. The parameter mu_d represented the mutation probability
for each target position on every cell division. The parameter d represented the number
of cell divisions. Finally, the parameter p_d represented the dropout probability of each
target position for every cell division. The code is outlined below:

With this code, we generate a lineage tree of 20 leaf barcodes with 10 target positions.
The sD$seqs contains the sequence information, and the sD$tree has the true tree
structure:

We can also print character information of the simulated barcodes.

The initial cell state is ‘0000000000’. There are d = 12 number of cell divisions result-
ing in 212 leaf nodes. Every target position changes to a different outcome state for
each cell division with a probability mu_d = 0.03 . The mutational positions randomly

Page 9 of 14Gong et al. BMC Bioinformatics (2022) 23:103

change to different outcomes, which follows a multinomial distribution with a proba-
bility p = out_prob . Every target position of leaf nodes randomly changes to a missing
state (’-’) with a probability pd = 0.005 . Finally, simn = 20 cells are randomly sampled.
The true lineage tree structure of 20 cells (simn = 20) is recorded in sD$tree. The
tree structure corresponding to simn = 20 cells is illustrated in Fig. 6.

Subsequently, we prepared five lineage trees as a training dataset. Each lineage tree has
10 leaves with 40 barcode target positions:

SDs is a list of 5 lineage trees. Each item of the SDs list is generated using sim_seq-
data function:

cell 0014
cell 0018
cell 0002
cell 0009
cell 0006
cell 0016
cell 0011
cell 0019
cell 0004
cell 0005
cell 0012
cell 0015
cell 0003
cell 0017
cell 0010
cell 0020
cell 0007
cell 0008
cell 0001
cell 0013

Fig. 6 Tree structure of 20 leaf cells

Page 10 of 14Gong et al. BMC Bioinformatics (2022) 23:103

The ten barcodes of the first training data are shown below.

We observed interval missing (dropout) events by marking them with a sequence of
hyphens. Weight parameters for the WHD method were trained using the WH_train
function. We specified the weight for the initial state and the weight for the dropout state.

We printed out the state characters as indicated below:

Page 11 of 14Gong et al. BMC Bioinformatics (2022) 23:103

Since the initial state (‘0’) is in the first position and the dropout state (‘-’) is in the second
position, we specify loc0=1 and locDroputout = 2:

We simulated one evaluation datum and compared the ground truth tree with three gen-
erated trees using the Hamming, WHD, and KRD distances with the FastMe algorithm for
tree construction:

First, we calculated the distance matrix using the Hamming distance, the WHD, and the
KRD methods:

Second, we constructed the tree using the FastMe algorithm with the tree rear-
rangement using fastme.bal function. The ground truth tree and the three gener-
ated trees were demonstrated in Fig. 7. As an alternative to fastme.bal function,
we could use different tree construction algorithms using nj, upgma, and fastme.
ols functions.

As outlined in Fig. 7, it is challenging to compare and determine which generation
is the optimal one. One useful metric for making a determination is the RF distance.
We calculated and compared the RF distances for the various generations. The RF dis-
tances were calculated and compared as indicated below:

Page 12 of 14Gong et al. BMC Bioinformatics (2022) 23:103

The lower the value of the RF distance between the ground truth tree and the generated
tree, the greater the similarity between the ground truth tree and the generated tree. Thus,
for the given example data, the KRD method produced optimal results.

Abbreviations
DCLEAR: Distance based Cell LinEAge Reconstruction; CRISPR: Clustered regularly interspaced short palindromic repeats;
R: Statistical Language R; CRAN: Comprehensive R archive network; GESTALT: Genome editing of synthetic target arrays
for lineage tracing; scGESTALT: An extended version of GESTALT considering single‑cell RNA sequencing data; AL: Aver‑
aged loss metric; RF: Robinson–Foulds distance; WHD: Weighted Hamming distance; KRD: k‑mer replacement distance;
NJ: Neighbor‑joining; UPGMA: Unweighted pair group method with arithmetic mean; FastMe: Fast distance‑based
phylogeny inference program.

Ground Truth

cell 0006
cell 0002
cell 0007
cell 0010
cell 0001
cell 0004
cell 0009
cell 0003
cell 0005
cell 0008

Hamming+FastMe

cell 0001
cell 0005

cell 0008
cell 0003

cell 0002
cell 0006

cell 0010
cell 0007

cell 0004
cell 0009

WHD+FastMe

cell 0001
cell 0004

cell 0009
cell 0003

cell 0008
cell 0005
cell 0002

cell 0007
cell 0010

cell 0006
KRD+FastMe

cell 0001
cell 0003
cell 0005
cell 0008
cell 0002

cell 0007
cell 0010
cell 0006
cell 0004

cell 0009

Fig. 7 Tree structure of 10 leaf cells, as determined for various standard distance measures

Page 13 of 14Gong et al. BMC Bioinformatics (2022) 23:103

Authors’ contributions
IYK and WG participated in the design of the tool, implemented and tested the software, drafted the manuscript. HJK
and DJG provided expert feedback in the design of the tool, the evaluation of the results and on the writing of the paper.
All authors read and approved the final manuscript.

Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIP) (No. NRF‑2020R1C1C1A01013020).

Availability of data and materials
DCLEAR is available from R cran at https:// cran.r‑ proje ct. org/ web/ packa ges/ DCLEAR/ index. html, and Github at https://
github. com/ ikwak2/ DCLEAR Datasets are downlaodable from the challenge website, https:// www. synap se. org/# !Synap
se: syn20 692755/ wiki/. after agreeing the terms and conditions. The R/DCLEAR package is free software; you can redistrib‑
ute it and/or modify it under the terms of the GNU General Public License, version 3.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Author details
1 Lillehei Heart Institute, University of Minnesota, Minneapolis, USA. 2 Department of Computer Science and Engineer‑
ing, Korea University, Seoul, Republic of Korea. 3 Department of Applied Statistics, Chung‑Ang University, Seoul, Republic
of Korea.

Received: 3 February 2022 Accepted: 13 March 2022

References
 1. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. Whole‑organism lineage tracing by combi‑

natorial and cumulative genome editing. Science. 2016;353:6298. https:// doi. org/ 10. 1126/ scien ce. aaf79 07.
 2. Raj B, Wagner DE, McKenna A, Pandey S, Klein AM, Shendure J, Gagnon JA, Schier AF. Simultaneous single‑cell profil‑

ing of lineages and cell types in the vertebrate brain. Nat Biotechnol. 2018;36(5):442–50. https:// doi. org/ 10. 1038/
nbt. 4103.

 3. Frieda KL, Linton JM, Hormoz S, Choi J, Chow K‑HK, Singer ZS, Budde MW, Elowitz MB, Cai L. Synthetic recording and
in situ readout of lineage information in single cells. Nature. 2017;541:107–11. https:// doi. org/ 10. 1038/ natur e20777.

 4. Alemany A, Florescu M, Baron CS, Peterson‑Maduro J, van Oudenaarden A. Whole‑organism clone tracing using
single‑cell sequencing. Nature. 2018;556:108–12. https:// doi. org/ 10. 1038/ natur e25969.

 5. Jones MG, Khodaverdian A, Quinn JJ, Chan MM, Hussmann JA, Wang R, Xu C, Weissman JS, Yosef N. Inference of
single‑cell phylogenies from lineage tracing data using cassiopeia. Genome Biol. 2020;21(1):92. https:// doi. org/ 10.
1186/ s13059‑ 020‑ 02000‑8.

 6. Gong W, Granados AA, Hu J, Jones MG, Raz O, Salvador‑Martínez I, Zhang H, Chow K‑HK, Kwak I‑Y, Retkute R, Pruso‑
kas A, Prusokas A, Khodaverdian A, Zhang R, Rao S, Wang R, Rennert P, Saipradeep VG, Sivadasan N, Rao A, Joseph
T, Srinivasan R, Peng J, Han L, Shang X, Garry DJ, Yu T, Chung V, Mason M, Liu Z, Guan Y, Yosef N, Shendure J, Telford
MJ, Shapiro E, Elowitz MB, Meyer P. Benchmarked approaches for reconstruction of in vitro cell lineages and in silico
models of c. elegans and m. musculus developmental trees. Cell Syst. 2021. https:// doi. org/ 10. 1016/j. cels. 2021. 05.
008

 7. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981;53(1):131–47. https:// doi. org/ 10. 1016/
0025‑ 5564(81) 90043‑2.

 8. Dobson AJ. Comparing the shapes of trees. In: Street AP, Wallis WD, editors. Combinatorial mathematics III. Berlin:
Springer; 1975. p. 95–100.

 9. Schliep K, Paradis E, Martins LdO, Potts A, White TW, Stachniss C, Kendall M, Halabi K, Bilderbeek R, Winchell K, Revell
L, Gilchrist M, Beaulieu J, O’Meara B, Jackman LQ. Phangorn: Phylogenetic Reconstruction and Analysis. 2015. R pack‑
age version 2.5.5. https:// CRAN.R‑ proje ct. org/ packa ge= phang orn

 10. Yan Y. rBayesianOptimization: Bayesian Optimization of Hyperparameters. 2016. R package version 1.1.0. https://
CRAN.R‑ proje ct. org/ packa ge= rBaye sianO ptimi zation

 11. Saitou N, Nei M. The neighbor‑joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol.
1987;4(4):406–25. https:// doi. org/ 10. 1093/ oxfor djour nals. molbev. a0404 54.

 12. Sokal RR, Michener CD. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull.
1958;38:1409–38.

 13. Desper R, Gascuel O. Fast and accurate phylogeny reconstruction algorithms based on the minimum‑evolution
principle. J Comput Biol. 2002;9:687–705.

https://cran.r-project.org/web/packages/DCLEAR/index.html
https://github.com/ikwak2/DCLEAR
https://github.com/ikwak2/DCLEAR
https://www.synapse.org/#%21Synapse:syn20692755/wiki/
https://www.synapse.org/#%21Synapse:syn20692755/wiki/
https://doi.org/10.1126/science.aaf7907
https://doi.org/10.1038/nbt.4103
https://doi.org/10.1038/nbt.4103
https://doi.org/10.1038/nature20777
https://doi.org/10.1038/nature25969
https://doi.org/10.1186/s13059-020-02000-8
https://doi.org/10.1186/s13059-020-02000-8
https://doi.org/10.1016/j.cels.2021.05.008
https://doi.org/10.1016/j.cels.2021.05.008
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1016/0025-5564(81)90043-2
https://CRAN.R-project.org/package=phangorn
https://CRAN.R-project.org/package=rBayesianOptimization
https://CRAN.R-project.org/package=rBayesianOptimization
https://doi.org/10.1093/oxfordjournals.molbev.a040454

Page 14 of 14Gong et al. BMC Bioinformatics (2022) 23:103

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 14. Paradis E, Claude J, Strimmer K. ape: Analyses of phylogenetics and evolution in R language. Bioinformatics.
2004;20(2):289–90. https:// doi. org/ 10. 1093/ bioin forma tics/ btg412.

 15. Grabocka J, Scholz R, Schmidt‑Thieme L. Learning surrogate losses (2019). CoRR abs/1905.10108. arXiv: 1905. 10108
 16. Team RC. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,

2017. R Foundation for Statistical Computing. https:// www.R‑ proje ct. org/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btg412
http://arxiv.org/abs/1905.10108
https://www.R-project.org/

