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Background
A multicellular organism or animal develops from one to two to four to an exponential 
number of cells. One of the challenges is the ability to predict the lineage tree repre-
senting the cell differentiation process starting from the single parental cell, based on 
cells extracted from the adult body. McKenna et al. [1] used gene editing technology and 
the immune system (CRISPR-CAS9) as the basis for proposing a methodology called 
GESTALT for estimating a cell-level lineage tree using the data generated using CRISPR-
CAS9 barcode edits from each cell. Subsequently, Raj et al. [2] proposed scGESTALT, 
which further considers cell type identification as an extension of GESTALT. Research-
ers have developed a number of additional CRISPR recorder-based technologies [3–5].
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posed two novel methods for distance matrix estimation as outlined in the DCLEAR 
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tional Hamming distance method. DCLEAR is open source and freely available from R 
CRAN and from under the GNU General Public License, version 3.
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This field lacked experimentation or analyses regarding the effectiveness of these 
proposed algorithms for comprehensive evaluation. To improve the evaluation pro-
cess, the Allen Institute established The Cell Lineage Reconstruction DREAM Chal-
lenge [6]. The Allen Institute proposed three different sub-challenges to benchmark 
reconstruction algorithms of cell lineage trees: (1) the reconstruction of in vitro cell 
lineages of 76 trees with fewer than 100 cells; (2) the reconstruction of an in silico 
cell lineage tree of 1000 cells; (3) the reconstruction of an in silico cell lineage tree of 
10,000 cells. Our proposed DCLEAR method won sub-challenges 2 and 3 of this chal-
lenge competition.

We outline and define the problem setting addressed in cell lineage reconstruction 
in the next section. We then present two core methods for distance matrix construc-
tion and outline how DCLEAR software may be applied to a simulated dataset.

Implementation
Problem setup

Assume we have n number of training data pairs. Each data pair consists of a set of cell 
sequences and a true cell lineage tree. One example of such a pair is illustrated in Fig. 1.

For the ith data pair, let mi be the number of cell sequences in the ith data pair and 
let t be the sequence length. Let the sequence information in data pair i be written as 
Ci , an mi × t matrix. The matrix element Ci

jk describes the jth sequence and the kth 
letter of the ith training data pair. Furthermore, we represent Li , the cell lineage tree 
structure, in the form of a Newick format string.

For example, if Fig. 1 represents ith data pair, (a) shows the sequence information. 
It has mi = 4 cell sequences, each sequence length has a length (t) of 10, and the first 
letter of the 3rd sequence is Ci

3,1 = E . The cell lineage tree is shown in Fig.  1b. In 
Newick format, Li = ((1 : 0.5, 2 : 0.5) : 2, (3 : 1.2, 4 : 1) : 2).

We built our model ( m(C; θ̂ ) ) with n training pairs. The input matrix, C is an mi × t 
sequence information matrix. The output is the Newick format string representing 
the tree structure while θ represents the parameter set related to model m(C; θ) , and 
θ̂ represents the estimated parameter with n training data pairs.

To evaluate the model, we have l number of unused data. The loss is indicated as 
L(m(Ci; θ̂ ), Li) . The loss increases when the predicted tree structure ( m(C; θ̂ ) ) differs 
from the true tree structure ( Li ). We use the averaged loss metric (AL) defined below 
to evaluate the model m(C; θ̂ ).

Fig. 1  a is the observed set of cell sequences, and b is the cell lineage tree. The goal is to predict the cell 
lineage tree in (b) using the cell sequences in (a)
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Next, we need to define the quantity L(L1, L2) that represents the dissimilarity between 
the two lineage trees, L1 and L2 . The two widely used measures of this dissimilarity are 
the Robinson–Foulds (RF) distance [7] and the Triplet distance [8].

Figure 2 represents two lineage trees, L1 and L2 . The possible separations for tree 1 are 
{1, 2}, {3, 4, 5} and {1, 2, 5}, {3, 4} , and the possible separations for tree 2 are {1, 2}, {3, 4, 5} 
and {1, 2, 3}, {4, 5} . Among the four possible separations, {1, 2}, {3, 4, 5} in tree 1 and tree 
2 are concordant separations. The RF distance is defined as the total number of concord-
ant separations divided by the total number of separations. As an example: the RF score 
for Figure 2 is 2/4 = 0.5.

For triplet distance calculations, we sample three items among all items in the 
tree. We determine 5C3 = 10 possible cases. We check whether the tree structure 
of the three items in tree 1 and tree 2 are the same. For example, the five cases of 
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 4, 5} and {2, 4, 5} have the same tree structure in both tree 1 
and tree 2. The triplet score is defined as the number of cases with the same tree struc-
ture divided by the number of possible cases. Accordingly, the triplet score for our exam-
ple is 5/10 = 0.5.

We will use ALRF to denote the RF distance and ALTP to denote the triplet distance.

Overview of the modeling architecture

The two main issues that need to be answered in the lineage reconstruction problem 
are (1) how should the model m(C; θ) be built and (2) how should θ̂ be estimated? Our 
modeling architecture for m(C; θ) is described in Fig. 3. We divide the model into two 
parts: (1) estimating the distance between cells and (2) constructing a tree using a dis-
tance matrix. Let D(C) be a function for estimating the distance matrix for an m× t 
input sequence matrix, C, and let t(D) be a function for predicting the lineage tree for 
an m×m distance matrix, D. Note that a knowledge of the triangular components in D 
is sufficient for defining the distance matrix. Subsequently, the challenge becomes how 
D(·) and t(·) should be defined.

Choice of distance

One notion for calculating the distance is to define the distance function for the two 
sequences. Let d(Ci·,Cj·; θ) = dij be the calculated distance between the ith cell 

(1)AL =

∑l
i=1 L(m(Ci; θ̂ ), Li)

l
.

Fig. 2  Two different trees, a L1 and b L2 , are presented to explain how the RF and triplet distances are defined. 
There are two possible cuts for each tree to separate items in the tree with two different sets of more than 
two items. The red slanted lines represent the possible cuts for separation



Page 4 of 14Gong et al. BMC Bioinformatics          (2022) 23:103 

and the jth cell obtained from the given cell information matrix C. The quantities 
Ci·, i = 1, · · · ,m represent the ith cell vector taken from C. The quantity dij is the (i, j)th 
element of the cell distance matrix D. The next challenge becomes how d(·, ·) should be 
defined.

Hamming distance method

One naive approach to modeling d(·, ·) is to compute the Hamming distance expressed 
in equation (2):

where 1(condition) is an indicator function with a value of 1 if the given condition is true 
and 0 otherwise. Note that the Hamming distance dH (Ci·,Cj·) simply counts unit differ-
ences between the two sequences Ci· and Cj·.

The simple calculation of the Hamming distance does not meet the challenges of the 
present study. Consider the cell differentiation process illustrated in Fig. 4. Let the 2nd 
and the 3rd leaf cells (dotted) have C2· = 0AB-0 and C3· = 00CB0 . The corresponding 
Hamming distance is dH (C2·,C3·) = 3 . However, it is not reasonable to assign equal 

(2)dH (Ci·,Cj·) =

t∑

l=1

1(Cil �= Cjl),

Fig. 3  Overview of our modeling architecture. Our model function m(C; θ) is divided into two parts: (1) 
estimating the distance between cells and (2) constructing a tree using the distance matrix

Fig. 4  Example of cell differentiation process
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weights to each target position. This deficiency is addressed by the weighted Hamming 
approach described in the following sub-sub-section.

The code for using the Hamming distance method is available from the phangorn 
package [9] using the dist.hamming function.

Weighted Hamming distance (WHD) method

An example of the cell diffusion process is illustrated in Fig. 4. Consider the objective of 
reconstructing the lineage tree based on information about the leaf nodes. What would 
be an appropriate measure for calculating the distance between 0AB-0 and 00CB0 (see 
the dotted circles in Fig. 4)? The character difference between ‘A’ and ‘0’ would be less 
than the character difference between ‘B’ and ‘C’ as the initial state ‘0’ can be differ-
entiated to ‘A’ or to any other outcome states, whereas states ‘B’ and ‘C’ cannot be dif-
ferentiated to other outcome states. In addition, the missing state ’-’ maybe any other 
state. Seeking a mathematical formula to accommodate these nuances, we propose the 
weighted Hamming distance (WHD) method:

where, Cil is the lth character in the ith cell sequence, and wCil
 is a weight associated with 

the character Cil . The code for calculating the WHD method is available as the dist_
weighted_hamming function in the DCLEAR package. For the estimation of weight 
parameters, we used Bayesian hyperparameter optimization using the BayesianOp-
timization function in the rBayesianOptimization package [10].

k‑mer replacement distance (KRD) method

The algorithm used to compute the k-mer replacement distance (KRD) method first uses 
the prominence of mutations in the character arrays to estimate the summary statistics 
used for the generation of the tree to be reconstructed. These statistics include the muta-
tion rate, the mutation probability for each character in the array, the number of targets, 
and the number of cells. These estimated parameters were combined with pre-defined 
parameters, such as the number of cell divisions, to simulate multiple lineage trees start-
ing from the non-mutated root. To generate trees with sizes and mutation distributions 
similar to the target tree, we generated 1000 lineage trees, each with 16 cell divisions of 
216 leaves, a mutation rate of 0.1, arrays of 200 characters, 200 cells, and 30 states (‘A’-
‘Z’ to ‘a’-‘c’, with an outcome probability following a Gamma distribution with a shape of 
0.1 and a rate of 2). Different possibilities for the k-mer distance method were then esti-
mated from the simulated lineage trees and used to compute the distances between the 
input sequences in the character arrays of internal nodes and tips. The KRD method is 
available from the DCLEAR package using the dist_replacement function.

Tree construction

We use existing methods such as Neighbor-Joining (NJ), UPGMA, and FastMe [11–13] 
for tree construction from the estimated distance matrix, D. The NJ method is imple-
mented as the nj function in the Analysis of Phylogenetics and Evolution (ape) package, 

(3)dWH1(Ci·,Cj·) =

t∑

l=1

wCil
wCjl

1(Cil �= Cjl),
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UPGMA is implemented as the upgma function in the phangorn package, and FastMe is 
implemented as fastme.bal, and fastme.ols in the ape package.

Results
This section reports the experimental results of applying the Hamming distance, WHD, 
and KRD methods using existing tree construction methods (NJ, UPGMA, and FastMe). 
For the use of NJ, UPGMA, and FastMe, the nj function in the ape package [14] was 
used for the NJ method, the upgma function in the phangorn package [9] was used for 
the UPGMA method, the fastme.ols function in the ape was used for the FastMe 
method, and the fastme.bal function in the ape was used for FastMe with tree 
rearrangement.

Datasets

Simulation dataset

The simulation dataset was generated from our simulation code. Parameter settings for 
the simulation were as follows: 

1.	 Number of targets: 50, 100, and 200
2.	 Mutation probability: 0.02, 0.04, 0.06, 0.08, and 0.1
3.	 Number of cells: 100
4.	 Dropout probability: 0, 0.05, and 0.1
5.	 Number of cell division: 16
6.	 Existance of point deletion: True, False

We iterated all 90 combinations ( 3× 5× 3× 2 ) of the parameter 5 times, result in 450 
simulation datasets. For each iteration, We generated five training sets and one evalua-
tion set. The averaged performance of the 450 evaluation sets was reported.

Sub‑challenge 2 and 3 datasets

The sub-challenge 2 and 3 datasets can be downloaded from the competition website 
of the Allen Institute Cell Lineage Reconstruction Challenge at https://​www.​synap​se.​
org/#​!Synap​se:​syn20​692755 (accessed on 17 September 2021). The sub-challenge 2 data-
set (the dataset for C.elegans cells) contained a 1000 cell tree from the 200 mutated/
non-mutated targets in each cell induced by simulation, and the sub-challenge 3 dataset 
(the dataset for mouse cells) had a 10,000 cell tree from the 1000 mutated/non-mutated 
targets in each cell induced by simulation. The different simulation models were used 
for sub-challenges 2 and 3. Both datasets had 100 trees. We randomly divided the sub-
challenge dataset into 75 trees for training and 25 trees for evaluation.

Experimental results

We outlined our experimental results in Fig. 5. The y-axis represented the RF distance, 
and the x-axis accommodated the different models. The Hamming distance, the KRD, 
and the WHD methods were used for distance calculation. NJ, UPGMA, and FastMe 
were methods for tree construction. For all three datasets, the KRD and the WHD meth-
ods displayed improved performance compared to the Hamming distance method. The 

https://www.synapse.org/#%21Synapse:syn20692755
https://www.synapse.org/#%21Synapse:syn20692755
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performance achieved with the KRD was similar to that achieved with WHD. Among 
the tree construction methods, FastMe with tree rearrangement displayed improved 
performance compared to the other tree construction methods.

Discussion
In these experiments, we only compared the Hamming distance, the WHD, and the KRD 
methods using the three datasets. Gong et al. [6] presented the comparison of the WHD 
and the KRD with the other methods that participated in the Cell Lineage Reconstruc-
tion Dream Challenge (2020). Our proposed WHD method was used for sub-challenge 
3, and the KRD method was used for sub-challenge 2. DCLEAR won both sub-chal-
lenges 2 and 3 but did not participate in sub-challenge 1. The sub-challenge 1 dataset has 
only ten target positions with two outcome states. The WHD and KRD methods were 
more powerful techniques with more complex settings, such as the existence of a drop-
out interval, the existence of missing target positions, and a larger number of outcome 
states. With the small target positions and the small outcome states of sub-challenge 1, 
the gain achieved by using the WHD and the KRD methods was not high. We were not 
able to show a comparison for sub-challenge 1 as DCLEAR did not participate in that 
sub-challenge. Thus, the future work of DCLEAR will contain an extension of the WHD 
and the KRD methods with small target and small outcome settings. Furthermore, for 
the WHD method, the hyperparameter tuning was performed using BayesianOptimiza-
tion because the loss was not differentiable with respect to weight parameters. We could 
utilize the surrogate loss to address this non-differentiable loss [15].

Conclusions
DCLEAR is a powerful resource for single cell lineage reconstruction.

Appendix
Simulating trees with barcodes

For a simple illustration of lineage reconstruction, we simulated data using the sim_
seqdata function in the DCLEAR package coded using the R [16] language. The sim_n 
parameter represented the number of cell samples. The prob_state parameter rep-
resented the cell state probability. The parameter m represented the number of targets. 

Fig. 5  Experimental result
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The parameter n_s represented the number of outcome states which equals the length 
quantified by prob_state. The parameter mu_d represented the mutation probability 
for each target position on every cell division. The parameter d represented the number 
of cell divisions. Finally, the parameter p_d represented the dropout probability of each 
target position for every cell division. The code is outlined below:

With this code, we generate a lineage tree of 20 leaf barcodes with 10 target positions. 
The sD$seqs contains the sequence information, and the sD$tree has the true tree 
structure:

We can also print character information of the simulated barcodes.

The initial cell state is ‘0000000000’. There are d = 12 number of cell divisions result-
ing in 212 leaf nodes. Every target position changes to a different outcome state for 
each cell division with a probability mu_d = 0.03 . The mutational positions randomly 
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change to different outcomes, which follows a multinomial distribution with a proba-
bility p = out_prob . Every target position of leaf nodes randomly changes to a missing 
state (’-’) with a probability pd = 0.005 . Finally, simn = 20 cells are randomly sampled. 
The true lineage tree structure of 20 cells ( simn = 20 ) is recorded in sD$tree. The 
tree structure corresponding to simn = 20 cells is illustrated in Fig. 6.

Subsequently, we prepared five lineage trees as a training dataset. Each lineage tree has 
10 leaves with 40 barcode target positions:

SDs is a list of 5 lineage trees. Each item of the SDs list is generated using sim_seq-
data function:

cell 0014
cell 0018
cell 0002
cell 0009
cell 0006
cell 0016
cell 0011
cell 0019
cell 0004
cell 0005
cell 0012
cell 0015
cell 0003
cell 0017
cell 0010
cell 0020
cell 0007
cell 0008
cell 0001
cell 0013

Fig. 6  Tree structure of 20 leaf cells
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The ten barcodes of the first training data are shown below.

We observed interval missing (dropout) events by marking them with a sequence of 
hyphens. Weight parameters for the WHD method were trained using the WH_train 
function. We specified the weight for the initial state and the weight for the dropout state.

We printed out the state characters as indicated below:
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Since the initial state (‘0’) is in the first position and the dropout state (‘-’) is in the second 
position, we specify loc0=1 and locDroputout = 2:

We simulated one evaluation datum and compared the ground truth tree with three gen-
erated trees using the Hamming, WHD, and KRD distances with the FastMe algorithm for 
tree construction:

First, we calculated the distance matrix using the Hamming distance, the WHD, and the 
KRD methods:

Second, we constructed the tree using the FastMe algorithm with the tree rear-
rangement using fastme.bal function. The ground truth tree and the three gener-
ated trees were demonstrated in Fig. 7. As an alternative to fastme.bal function, 
we could use different tree construction algorithms using nj, upgma, and fastme.
ols functions.

As outlined in Fig. 7, it is challenging to compare and determine which generation 
is the optimal one. One useful metric for making a determination is the RF distance. 
We calculated and compared the RF distances for the various generations. The RF dis-
tances were calculated and compared as indicated below:
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The lower the value of the RF distance between the ground truth tree and the generated 
tree, the greater the similarity between the ground truth tree and the generated tree. Thus, 
for the given example data, the KRD method produced optimal results.

Abbreviations
DCLEAR: Distance based Cell LinEAge Reconstruction; CRISPR: Clustered regularly interspaced short palindromic repeats; 
R: Statistical Language R; CRAN: Comprehensive R archive network; GESTALT: Genome editing of synthetic target arrays 
for lineage tracing; scGESTALT: An extended version of GESTALT considering single-cell RNA sequencing data; AL: Aver‑
aged loss metric; RF: Robinson–Foulds distance; WHD: Weighted Hamming distance; KRD: k-mer replacement distance; 
NJ: Neighbor-joining; UPGMA: Unweighted pair group method with arithmetic mean; FastMe: Fast distance-based 
phylogeny inference program.

Ground Truth

cell 0006
cell 0002
cell 0007
cell 0010
cell 0001
cell 0004
cell 0009
cell 0003
cell 0005
cell 0008

Hamming+FastMe

cell 0001
cell 0005

cell 0008
cell 0003

cell 0002
cell 0006

cell 0010
cell 0007

cell 0004
cell 0009

WHD+FastMe

cell 0001
cell 0004

cell 0009
cell 0003

cell 0008
cell 0005
cell 0002

cell 0007
cell 0010

cell 0006
KRD+FastMe

cell 0001
cell 0003
cell 0005
cell 0008
cell 0002

cell 0007
cell 0010
cell 0006
cell 0004

cell 0009

Fig. 7  Tree structure of 10 leaf cells, as determined for various standard distance measures
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